当前位置: X-MOL 学术Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems
Matter ( IF 17.3 ) Pub Date : 2020-03-04 , DOI: 10.1016/j.matt.2020.01.001
P. Prabhu , Vishal Jose , Jong-Min Lee

Transition metal dichalcogenides (TMDs) are promising materials for use in electrocatalytic and electrochemical energy-storage systems owing to their exceptional physicochemical properties, including large surface area, remarkable mechanical properties, high catalytic activity, chemical stability, and low cost. In further improving material properties tailored to meet application-specific requirements, heterostructure construction holds significant advantages, benefiting from the synergistic effect between constituents involved. TMD-based heterostructures have been widely explored recently, giving rise to diverse materials with desirable characteristics such as significantly increased interfacial contact of low resistance for efficient electron transfers, constituent-dependent electronic structure, tunable layer distances facilitating easily intercalation of redox species, and increased surface area for effective interaction with electrolyte. In this review, TMD-based heterostructures are assessed for performance in electrocatalytic conversion (hydrogen evolution reaction) and electrochemical energy-storage systems (NiB/LiB/supercapacitors). The impactful strategies employed in overcoming key challenges are evaluated, and finally, future directions for TMD-based heterostructure construction are presented.



中文翻译:

电化学能源系统中基于TMD的异质结构开发的设计策略

过渡金属二硫化碳(TMDs)由于其出色的物理化学特性(包括大表面积,出色的机械特性,高催化活性,化学稳定性和低成本),是用于电催化和电化学储能系统的有前途的材料。在进一步改善为满足特定应用需求而量身定制的材料性能的过程中,异质结构的构造具有明显的优势,这得益于所涉及成分之间的协同效应。最近,基于TMD的异质结构得到了广泛的研究,从而产生了具有所需特性的各种材料,例如显着增加了低电阻的界面接触,从而实现了有效的电子转移,依赖成分的电子结构,可调节的层距离便于氧化还原物质的嵌入,并增加了表面积,可与电解质有效相互作用。在这篇综述中,评估了基于TMD的异质结构在电催化转化(氢释放反应)和电化学储能系统(NiB / LiB /超级电容器)中的性能。评估了用于克服关键挑战的有效策略,最后,提出了基于TMD的异质结构构建的未来方向。

更新日期:2020-03-04
down
wechat
bug