当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum information processing and quantum optics with circuit quantum electrodynamics
Nature Physics ( IF 17.6 ) Pub Date : 2020-03-02 , DOI: 10.1038/s41567-020-0806-z
Alexandre Blais , Steven M. Girvin , William D. Oliver

Since the first observation of coherent quantum behaviour in a superconducting qubit, now more than 20 years ago, there have been substantial developments in the field of superconducting quantum circuits. One such advance is the introduction of the concepts of cavity quantum electrodynamics (QED) to superconducting circuits, to yield what is now known as circuit QED. This approach realizes in a single architecture the essential requirements for quantum computation, and has already been used to run simple quantum algorithms and to operate tens of superconducting qubits simultaneously. For these reasons, circuit QED is one of the leading architectures for quantum computation. In parallel to these advances towards quantum information processing, circuit QED offers new opportunities for the exploration of the rich physics of quantum optics in novel parameter regimes in which strongly nonlinear effects are readily visible at the level of individual microwave photons. We review circuit QED in the context of quantum information processing and quantum optics, and discuss some of the challenges on the road towards scalable quantum computation.



中文翻译:

具有电路量子电动力学的量子信息处理和量子光学

自二十多年前对超导量子位中的相干量子行为进行首次观察以来,超导量子电路领域已取得了长足的发展。一种这样的进步是将腔量子电动力学(QED)概念引入超导电路,以产生现在称为电路QED的电路。这种方法在单个体系结构中实现了量子计算的基本要求,并且已经被用于运行简单的量子算法和同时操作数十个超导量子位。由于这些原因,电路QED是用于量子计算的领先架构之一。与这些在量子信息处理方面的进展并行的是,电路QED在新颖的参数体系中为探索量子光学的丰富物理学提供了新的机会,其中在单个微波光子的水平​​上很容易看到强烈的非线性效应。我们在量子信息处理和量子光学的背景下回顾了电路QED,并讨论了可扩展量子计算道路上的一些挑战。

更新日期:2020-03-03
down
wechat
bug