当前位置: X-MOL 学术BMC Bioinform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LK-DFBA: a linear programming-based modeling strategy for capturing dynamics and metabolite-dependent regulation in metabolism.
BMC Bioinformatics ( IF 2.9 ) Pub Date : 2020-03-02 , DOI: 10.1186/s12859-020-3422-0
Robert A Dromms 1 , Justin Y Lee 1 , Mark P Styczynski 1
Affiliation  

BACKGROUND The systems-scale analysis of cellular metabolites, "metabolomics," provides data ideal for applications in metabolic engineering. However, many of the computational tools for strain design are built around Flux Balance Analysis (FBA), which makes assumptions that preclude direct integration of metabolomics data into the underlying models. Finding a way to retain the advantages of FBA's linear structure while relaxing some of its assumptions could allow us to account for metabolite levels and metabolite-dependent regulation in strain design tools built from FBA, improving the accuracy of predictions made by these tools. We designed, implemented, and characterized a modeling strategy based on Dynamic FBA (DFBA), called Linear Kinetics-Dynamic Flux Balance Analysis (LK-DFBA), to satisfy these specifications. Our strategy adds constraints describing the dynamics and regulation of metabolism that are strictly linear. We evaluated LK-DFBA against alternative modeling frameworks using simulated noisy data from a small in silico model and a larger model of central carbon metabolism in E. coli, and compared each framework's ability to recapitulate the original system. RESULTS In the smaller model, we found that we could use regression from a dynamic flux estimation (DFE) with an optional non-linear parameter optimization to reproduce metabolite concentration dynamic trends more effectively than an ordinary differential equation model with generalized mass action rate laws when tested under realistic data sampling frequency and noise levels. We observed detrimental effects across all tested modeling approaches when metabolite time course data were missing, but found these effects to be smaller for LK-DFBA in most cases. With the E. coli model, we produced qualitatively reasonable results with similar properties to the smaller model and explored two different parameterization structures that yield trade-offs in computation time and accuracy. CONCLUSIONS LK-DFBA allows for calculation of metabolite concentrations and considers metabolite-dependent regulation while still retaining many computational advantages of FBA. This provides the proof-of-principle for a new metabolic modeling framework with the potential to create genome-scale dynamic models and the potential to be applied in strain engineering tools that currently use FBA.

中文翻译:

LK-DFBA:一种基于线性规划的建模策略,用于捕获代谢中的动力学和代谢物依赖性调节。

背景技术细胞代谢物“代谢组学”的系统规模分析提供了在代谢工程中应用的理想数据。但是,许多用于应变设计的计算工具都是围绕通量平衡分析(FBA)建立的,该假设进行了假设,无法将代谢组学数据直接集成到基础模型中。寻找一种方法来保留FBA线性结构的优势,同时放松一些假设,这可以使我们在FBA构建的应变设计工具中考虑代谢物水平和代谢物依赖性调节,从而提高了这些工具所作预测的准确性。为了满足这些规范,我们设计,实施并描述了基于动态FBA(DFBA)的建模策略,称为线性动力学-动态通量平衡分析(LK-DFBA)。我们的策略增加了描述线性变化的代谢动力学和调控的约束条件。我们使用来自小型计算机模拟模型和较大模型的大肠杆菌中中央碳代谢模型的模拟噪声数据,针对替代建模框架对LK-DFBA进行了评估,并比较了每个框架重现原始系统的能力。结果在较小的模型中,我们发现,与具有广义质量作用速率定律的普通微分方程模型相比,我们可以使用动态通量估计(DFE)和可选的非线性参数优化的回归来更有效地重现代谢物浓度动态趋势。在实际数据采样频率和噪声水平下进行了测试。当缺少代谢产物时程数据时,我们观察了所有测试建模方法的有害影响,但发现在大多数情况下,这些影响对于LK-DFBA较小。使用E. coli模型,我们获得了定性合理的结果,其性质与较小的模型相似,并且探索了两种不同的参数化结构,这些结构在计算时间和准确性上进行了权衡。结论LK-DFBA可以计算代谢物浓度并考虑代谢物依赖性调节,同时仍保留FBA的许多计算优势。这为新的代谢建模框架提供了原理证明,具有创建基因组规模动态模型的潜力,并有可能在当前使用FBA的菌株工程工具中应用。但发现在大多数情况下,对LK-DFBA的影响较小。使用E. coli模型,我们获得了定性合理的结果,其性质与较小的模型相似,并且探索了两种不同的参数化结构,这些结构在计算时间和准确性上进行了权衡。结论LK-DFBA可以计算代谢物浓度并考虑代谢物依赖性调节,同时仍保留FBA的许多计算优势。这为新的代谢建模框架提供了原理证明,具有创建基因组规模动态模型的潜力,并有可能在当前使用FBA的菌株工程工具中应用。但发现在大多数情况下,对LK-DFBA的影响较小。使用E. coli模型,我们获得了定性合理的结果,其性质与较小的模型相似,并且探索了两种不同的参数化结构,这些结构在计算时间和准确性上进行了权衡。结论LK-DFBA可以计算代谢物浓度并考虑代谢物依赖性调节,同时仍保留FBA的许多计算优势。这为新的代谢建模框架提供了原理证明,具有创建基因组规模动态模型的潜力,并有可能在当前使用FBA的菌株工程工具中应用。我们得出了定性合理的结果,与较小的模型具有相似的属性,并探索了两种不同的参数化结构,这些结构在计算时间和准确性上进行了权衡。结论LK-DFBA可以计算代谢物浓度并考虑代谢物依赖性调节,同时仍保留FBA的许多计算优势。这为新的代谢建模框架提供了原理证明,具有创建基因组规模动态模型的潜力,并有可能在当前使用FBA的菌株工程工具中应用。我们得出了定性合理的结果,其性质与较小的模型相似,并且探索了两种不同的参数化结构,这些结构在计算时间和准确性上取得了平衡。结论LK-DFBA可以计算代谢物浓度并考虑代谢物依赖性调节,同时仍保留FBA的许多计算优势。这为新的代谢建模框架提供了原理证明,具有创建基因组规模动态模型的潜力,并有可能在当前使用FBA的菌株工程工具中应用。
更新日期:2020-03-03
down
wechat
bug