当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the formulation of the kinematics and thermodynamics for polycrystalline materials undergoing phase transformation
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.ijplas.2019.07.012
Adetokunbo A. Adedoyin , Koffi Enakoutsa , Douglas J. Bammann

Abstract Commonly implemented material processing routines not limited to quenching, welding or heat treatment requires exposure of a part to complex thermal and mechanical loading histories that manifest as residual stress and distortion. Of interest to material designers and fabricators is modeling and simulating the evolutionary process a part undergoes for the sake of capturing this observable residual stress states and geometric distortion accumulated after processing. To move toward an overall consistent modeling approach, we premise this investigation with a consistent thermodynamic framework for a generalized multiphase material. Following this, we extend the single phase Evolving Microstructural Model of Inelasticity (EMMI) internal state variable model to multiphase affirming that the interaction between phases is through an interfacial stress. We then use a self-consistent polycrystalline model to partition each individual phase’s strain field ensuring a hybrid between compatibility and equilibrium. With a synthesis of the aforementioned ideas, the additional transformation plasticity (TRIP) is accounted for by changing each phase’s flow rule to accommodate an interfacial stress. Following this, we couple the mechanical multiphase model equations with a previously developed non-diffusional phase transformation kinetics model. Contrary to the classical modeling approach, our material model is based on mixture theory wherein we track the behavior of each individual phase. A numerical evaluation of the coupled model is performed and applied to a simplified quenching boundary value problem.

中文翻译:

多晶材料相变运动学和热力学公式的建立

摘要 通常实施的材料加工程序不仅限于淬火、焊接或热处理,还需要将零件暴露于复杂的热和机械负载历史中,这些历史表现为残余应力和变形。材料设计师和制造商感兴趣的是建模和模拟零件所经历的演化过程,以便捕捉这种可观察的残余应力状态和加工后累积的几何变形。为了采用整体一致的建模方法,我们以通用多相材料的一致热力学框架为前提。按照此,我们将单相非弹性演化微结构模型 (EMMI) 内部状态变量模型扩展到多相,确认相之间的相互作用是通过界面应力进行的。然后我们使用自洽多晶模型来划分每个单独相的应变场,确保兼容性和平衡之间的混合。综合上述想法,通过改变每个相的流动规则以适应界面应力来解释额外的转变塑性 (TRIP)。在此之后,我们将机械多相模型方程与先前开发的非扩散相变动力学模型相结合。与经典建模方法相反,我们的材料模型基于混合理论,其中我们跟踪每个单独相的行为。
更新日期:2019-12-01
down
wechat
bug