当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A microfluidic approach for experimentally modelling the intercellular coupling system of a mammalian circadian clock at single-cell level.
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-03-02 , DOI: 10.1039/d0lc00140f
Kui Han 1 , Long Mei , Ruoyu Zhong , Yuhong Pang , Eric Erquan Zhang , Yanyi Huang
Affiliation  

In mammals, it is believed that the intercellular coupling mechanism between neurons in the suprachiasmatic nucleus (SCN) confers robustness and distinguishes the central clock from peripheral circadian oscillators. Current in vitro culturing methods used in Petri dishes to study intercellular coupling by exogenous factors invariably cause perturbations, such as simple media changes. Here, we design a microfluidic device to quantitatively study the intercellular coupling mechanism of circadian clock at the single cell level, and demonstrate that vasoactive intestinal peptide (VIP) induced coupling in clock mutant Cry1-/- mouse adult fibroblasts engineered to express the VIP receptor, VPAC2, is sufficient to synchronize and maintain robust circadian oscillations. Our study provides a proof-of-concept platform to reconstitute the intercellular coupling system of the central clock using uncoupled, single fibroblast cells in vitro, to mimic SCN slice cultures ex vivo and mouse behavior in vivo phenotypically. Such a versatile microfluidic platform may greatly facilitate the studies of intercellular regulation networks, and provide new insights into the coupling mechanisms of the circadian clock.

中文翻译:

一种微流体方法,用于在单细胞水平上对哺乳动物生物钟的细胞间偶联系统进行建模。

在哺乳动物中,据信在视交叉上神经核(SCN)中的神经元之间的细胞间偶联机制赋予了鲁棒性,并使中央时钟与周围的生物钟振荡器区分开。目前培养皿中用于研究外源因素引起的细胞间偶联的体外培养方法总是引起摄动,例如简单的培养基改变。在这里,我们设计了一种微流体装置,以定量研究昼夜节律在单细胞水平上的细胞间偶联机制,并证明血管活性肠肽(VIP)诱导了时钟突变体Cry1-/-的偶联。经过工程改造以表达VIP受体VPAC2的小鼠成年成纤维细胞足以同步并维持稳健的昼夜节律振荡。我们的研究提供了一个概念验证平台,可在体外使用未偶联的单个成纤维细胞重建中央时钟的细胞间偶联系统,从而表型上模拟SCN切片培养物的离体和小鼠行为。这种通用的微流体平台可以极大地促进细胞间调节网络的研究,并提供对生物钟的耦合机制的新见解。
更新日期:2020-04-24
down
wechat
bug