当前位置: X-MOL 学术Adv. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin oxide films and interfaces for electronics and spintronics
Advances in Physics ( IF 35.0 ) Pub Date : 2011-02-01 , DOI: 10.1080/00018732.2010.534865
Manuel Bibes , Javier E. Villegas , Agnès Barthélémy

Oxides have become a key ingredient for new concepts of electronic devices. To a large extent, this is due to the profusion of new physics and novel functionalities arising from ultrathin oxide films and at oxide interfaces. We present here a perspective on selected topics within this vast field and focus on two main issues. The first part of this review is dedicated to the use of ultrathin films of insulating oxides as barriers for tunnel junctions. In addition to dielectric non-magnetic epitaxial barriers, which can produce tunneling magnetoresistances in excess of a few hundred percent, we pay special attention to the possibility of exploiting the multifunctional character of some oxides in order to realize ‘active’ tunnel barriers. In these, the conductance across the barrier is not only controlled by the bias voltage and/or the electrodes magnetic state, but also depends on the barrier ferroic state. Some examples include spin-filtering effects using ferro- and ferrimagnetic oxides, and the possibility of realizing hysteretic, multi-state junctions using ferroelectric barriers. The second part of this review is devoted to novel states appearing at oxide interfaces. Often completely different from those of the corresponding bulk materials, they bring about novel functionalities to be exploited in spintronics and electronics architectures. We review the main mechanisms responsible for these new properties (such as magnetic coupling, charge transfer and proximity effects) and summarize some of the most paradigmatic phenomena. These include the formation of high-mobility two-dimensional electron gases at the interface between insulators, the emergence of superconductivity (or ferromagnetism) at the interface between non-superconducting (or non-ferromagnetic) materials, the observation of magnetoelectric effects at magnetic/ferroelectric interfaces or the effects of the interplay and competing interactions at all-oxide ferromagnetic/superconducting interfaces. Finally, we link up the two reviewed research fields and emphasize that the tunneling geometry is particularly suited to probe novel interface effects at oxide barrier/electrode interfaces. We close by giving some directions toward tunneling devices exploiting novel oxide interfacial phenomena.

中文翻译:

用于电子和自旋电子学的超薄氧化膜和界面

氧化物已成为电子设备新概念的关键成分。在很大程度上,这是由于超薄氧化膜和氧化物界面产生的大量新物理和新功能。我们在此提出对这一广阔领域内选定主题的看法,并重点关注两个主要问题。本综述的第一部分致力于使用绝缘氧化物的超薄膜作为隧道结的阻挡层。除了可以产生超过百分之几百的隧道磁阻的介电非磁性外延势垒之外,我们还特别关注利用某些氧化物的多功能特性来实现“有源”隧道势垒的可能性。在这些,跨越势垒的电导不仅受偏压和/或电极磁性状态的控制,而且还取决于势垒的铁质状态。一些例子包括使用铁磁和亚铁磁氧化物的自旋过滤效应,以及使用铁电势垒实现滞后、多态结的可能性。本综述的第二部分致力于氧化物界面上出现的新状态。通常与相应的大块材料完全不同,它们带来了可在自旋电子学和电子结构中利用的新功能。我们回顾了导致这些新特性(如磁耦合、电荷转移和邻近效应)的主要机制,并总结了一些最典型的现象。这些包括在绝缘体之间的界面处形成高迁移率的二维电子气,在非超导(或非铁磁)材料之间的界面处出现超导(或铁磁性),在磁/铁电界面或全氧化物铁磁/超导界面的相互作用和竞争相互作用的影响。最后,我们将两个回顾的研究领域联系起来,并强调隧道几何特别适合探测氧化物势垒/电极界面处的新界面效应。我们最后给出了一些利用新型氧化物界面现象的隧道设备的方向。在非超导(或非铁磁)材料之间的界面出现超导性(或铁磁性),观察磁/铁电界面的磁电效应或全氧化物铁磁/超导界面的相互作用和竞争相互作用的影响. 最后,我们将两个回顾的研究领域联系起来,并强调隧道几何特别适合探测氧化物势垒/电极界面处的新界面效应。我们最后给出了一些利用新型氧化物界面现象的隧道设备的方向。在非超导(或非铁磁)材料之间的界面出现超导性(或铁磁性),观察磁/铁电界面的磁电效应或全氧化物铁磁/超导界面的相互作用和竞争相互作用的影响. 最后,我们将两个回顾的研究领域联系起来,并强调隧道几何特别适合探测氧化物势垒/电极界面处的新界面效应。我们最后给出了一些利用新型氧化物界面现象的隧道设备的方向。观察磁/铁电界面的磁电效应或全氧化物铁磁/超导界面的相互作用和竞争相互作用的影响。最后,我们将两个回顾的研究领域联系起来,并强调隧道几何特别适合探测氧化物势垒/电极界面处的新界面效应。我们最后给出了一些利用新型氧化物界面现象的隧道设备的方向。观察磁/铁电界面的磁电效应或全氧化物铁磁/超导界面的相互作用和竞争相互作用的影响。最后,我们将两个回顾的研究领域联系起来,并强调隧道几何特别适合探测氧化物势垒/电极界面处的新界面效应。我们最后给出了一些利用新型氧化物界面现象的隧道设备的方向。
更新日期:2011-02-01
down
wechat
bug