当前位置: X-MOL 学术Adv. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Foundations of Plasmonics
Advances in Physics ( IF 35.0 ) Pub Date : 2011-10-01 , DOI: 10.1080/00018732.2011.621320
Y. Wang , E. W. Plummer , K. Kempa

Plasma physics is a very mature field, studied extensively for well over a century. The cross-disciplinary field of plasmonics (electromagnetics of metallic nanostructures), on the other hand, with its potential for an extraordinary light control through novel class of materials and the resulting applications, has become very fashionable only recently. Inevitably, as a result of this rapid development, the deep connections with the mother discipline, the plasma physics, have sometimes been overlooked. The goal of this work is to review some of these basic connections, which are relevant, and ultimately helpful for researchers in the new field. We focus on the solid-state structured plasmas and address the issue of classical versus quantum treatments. We discuss the little known subtleties of the surface plasmons at metallic surfaces (e.g. multipole plasmons) and their consequences on plasmonics of the textured metallic films. Plasmonics of nanoparticles has been preceded by studies of plasma effects in metallic clusters and semiconducting quantum dots (QDs). In this context, we discuss the little known connection between the Mie resonance in metallic particles and the collective resonance in wide parabolic quantum wells (QWs) and QDs. Researchers dealing with plasmonics of thin films can benefit from earlier studies of plasmons in the semiconductor modulation doped heterojunctions and QWs, with its rich spectrum of intersubband and two-dimensional plasmons. In non-equilibrium plasmonic systems, generation of plasmons can be stimulated, leading to the exciting possibility of the plasmon instability. Extraordinarily complex is the plasmonics of carbon nanotubes and graphene, with its numerous van Hove, one- and three-dimensional plasmons, and we discuss how the plasmonics of metamaterials can benefit from this complexity. Finally, we discuss a few applications, which could directly benefit from plasmonics, including medical and the novel class of solar cells.

中文翻译:

等离子体学基础

等离子体物理学是一个非常成熟的领域,一个多世纪以来被广泛研究。另一方面,等离子体学(金属纳米结构的电磁学)的跨学科领域具有通过新型材料和由此产生的应用实现非凡光控制的潜力,直到最近才变得非常流行。不可避免地,由于这种快速发展,与母学科等离子体物理学的深层联系有时会被忽视。这项工作的目标是回顾这些基本联系中的一些,这些联系是相关的,最终对新领域的研究人员有帮助。我们专注于固态结构等离子体并解决经典与量子治疗的问题。我们讨论了金属表面上表面等离子体的鲜为人知的微妙之处(例如 多极等离子体)及其对纹理金属膜的等离子体的影响。纳米粒子的等离子体在金属簇和半导体量子点 (QD) 中的等离子体效应研究之前。在这种情况下,我们讨论了金属粒子中的 Mie 共振与宽抛物线量子阱 (QW) 和 QD 中的集体共振之间鲜为人知的联系。研究薄膜等离子体激元的研究人员可以从早期对半导体调制掺杂异质结和 QW 中等离子体激元的研究中受益,这些等离子体激元具有丰富的子带间和二维等离子体激元光谱。在非平衡等离子体系统中,可以刺激等离子体的产生,导致等离子体不稳定的令人兴奋的可能性。非常复杂的是碳纳米管和石墨烯的等离子体激元,凭借其众多的范霍夫、一维和三维等离激元,我们讨论了超材料的等离激元如何从这种复杂性中受益。最后,我们讨论了一些可以直接受益于等离子体的应用,包括医疗和新型太阳能电池。
更新日期:2011-10-01
down
wechat
bug