当前位置: X-MOL 学术New Phytol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A theory of plant function helps to explain leaf-trait and productivity responses to elevation.
New Phytologist ( IF 8.3 ) Pub Date : 2020-02-29 , DOI: 10.1111/nph.16447
Yunke Peng 1, 2 , Keith J Bloomfield 2 , Iain Colin Prentice 2, 3, 4
Affiliation  

Several publications have examined leaf-trait and carbon-cycling shifts along an Amazon-Andes transect spanning 3.5 km in elevation and 16°C in mean annual temperature. Photosynthetic capacity was previously shown to increase as temperature declines with increasing elevation, counteracting enzyme-kinetic effects. Primary production declines, nonetheless, due to decreasing light availability. We aimed to predict leaf-trait and production gradients from first principles, using published data to test an emerging theory whereby photosynthetic traits and primary production depend on optimal acclimation and/or adaptation to environment. We re-analysed published data for 210 species at 25 sites, fitting linear relationships to elevation for both predicted and observed photosynthetic traits and primary production. Declining leaf-internal/ambient CO2 ratio (χ) and increasing carboxylation (Vcmax ) and electron-transport (Jmax ) capacities with increasing elevation were predicted. Increases in leaf nitrogen content with elevation were explained by increasing Vcmax and leaf mass-per-area. Leaf and soil phosphorus covaried, but after controlling for elevation, no nutrient metric accounted for any additional variance in photosynthetic traits. Primary production was predicted to decline with elevation. This analysis unifies leaf and ecosystem observations in a common theoretical framework. The insensitivity of primary production to temperature is shown to emerge as a consequence of the optimisation of photosynthetic traits.

中文翻译:

植物功能理论有助于解释叶片性状和生产力对海拔的响应。

一些出版物研究了沿亚马逊-安第斯山脉横断面的叶性状和碳循环变化,该横断面海拔高3.5公里,年平均气温16°C。以前显示出光合能力随着温度的升高而随海拔升高而增加,从而抵消了酶的动力学作用。然而,由于光的可用性下降,初级产量下降。我们的目的是根据第一原理来预测叶片的性状和产量梯度,使用已发表的数据来测试一种新兴的理论,其中光合特性和初级产量取决于最佳的适应和/或对环境的适应性。我们重新分析了25个站点上210种的已发布数据,使线性和海拔高度的线性关系符合预测和观察到的光合特性和初级生产。随着海拔的升高,预计叶片内部/周围的CO2比(χ)下降,羧化(Vcmax)和电子传递(Jmax)能力增加。叶片氮含量随海拔升高而增加,可以通过增加Vcmax和单位面积叶片质量来解释。叶片和土壤中的磷共变,但是在控制了海拔高度之后,没有任何营养指标可以说明光合性状的任何其他变化。预计初级生产会随着海拔的升高而下降。该分析将叶片和生态系统的观测结果统一在一个通用的理论框架中。由于光合性状的最优化,初级生产对温度的不敏感性出现了。叶片氮含量随海拔升高而增加,可以通过增加Vcmax和单位面积叶片质量来解释。叶片和土壤中的磷共变,但是在控制了海拔高度之后,没有任何营养指标可以说明光合性状的任何其他变化。预计初级生产会随着海拔的升高而下降。该分析将叶片和生态系统的观测结果统一在一个通用的理论框架中。由于光合性状的最优化,初级生产对温度的不敏感性出现了。叶片氮含量随海拔升高而增加,可以通过增加Vcmax和单位面积叶片质量来解释。叶片和土壤中的磷共变,但是在控制了海拔高度之后,没有任何营养指标可以说明光合性状的任何其他变化。预计初级生产会随着海拔的升高而下降。该分析将叶片和生态系统的观测结果统一在一个通用的理论框架中。由于光合性状的最优化,初级生产对温度的不敏感性出现了。该分析将叶片和生态系统的观测结果统一在一个通用的理论框架中。由于光合性状的最优化,初级生产对温度的不敏感性出现了。该分析将叶片和生态系统的观测结果统一在一个通用的理论框架中。由于光合特性的优化,初级生产对温度的不敏感性出现了。
更新日期:2020-02-29
down
wechat
bug