当前位置: X-MOL 学术J. Opt. Soc. Amer. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong magnetic field enhancement and magnetic Purcell effect in a dielectric disk-ring composite nanocavity
Journal of the Optical Society of America B ( IF 1.8 ) Pub Date : 2020-02-12 , DOI: 10.1364/josab.382711
Yang Yang , Bofeng Zhu , Haitao Dai

All-dielectric nanocavities with low dissipative absorption bring new opportunities for efficiently enhancing and confining the optical magnetic field. Recently, a high-index dielectric nanodisk with internal magnetic dipole (MD) mode has become a prominent candidate in accelerating the spontaneous decay of MD transitions in quantum emitters (known as the magnetic Purcell effect). In this paper, we numerically investigate a dielectric disk-ring composite nanocavity that is capable of achieving 1 order of magnitude stronger enhancement of the magnetic field than a single disk. Multipole decomposition analysis further reveals the ultra-high enhancement is attributed to the huge MD radiation originating from the near-field (radiative) coupling between the MD mode and the electric quadrupole (magnetic octupole). More importantly, the numerical results also indicate such a composite nanocavity supports a stronger Purcell effect than a single disk under the excitation of an MD emitter, which can be verified by theoretical calculations. Further simulation demonstrates the better tolerance of the composite nanocavity on larger hole dimensions, thereby reducing the experimental difficulties in both structure fabrication and emitter loading. In addition, the dependence of the Purcell factor on the dipole orientation is investigated, demonstrating the great compatibility of the composite nanocavity. This presented design could open a promising avenue beyond the individual disk cavity for light–matter interactions in the magneto-optical domain.

中文翻译:

介电盘-环复合纳米腔中的强磁场增强和赛尔磁效应

具有低耗散吸收的全介电纳米腔为有效增强和限制光磁场带来了新的机遇。最近,具有内部磁偶极(MD)模式的高折射率电介质纳米磁盘已成为加速量子发射器中MD跃迁自发衰减的著名候选者(称为磁性赛尔效应)。在本文中,我们以数值方式研究了电介质盘环复合纳米腔,该腔比单个磁盘能够实现磁场强度增强1个数量级。多极分解分析进一步揭示了超高增强归因于巨大的MD辐射,其源自MD模式与电四极子(电磁八极)之间的近场(辐射)耦合。更重要的是,数值结果还表明,在MD发射器的激励下,这种复合纳米腔比单个盘具有更强的赛尔效应,这可以通过理论计算得到验证。进一步的仿真表明,复合纳米腔体在较大的孔尺寸上具有更好的耐受性,从而减少了结构制造和发射极载荷方面的实验困难。此外,研究了珀塞尔因数对偶极子方向的依赖性,证明了复合纳米腔具有很好的相容性。提出的设计可以为单个磁盘腔之外的磁光域中的光-物质相互作用开辟一条有希望的途径。可以通过理论计算来验证。进一步的仿真表明,复合纳米腔体在较大的孔尺寸上具有更好的耐受性,从而减少了结构制造和发射极载荷方面的实验困难。此外,研究了珀塞尔因数对偶极子方向的依赖性,证明了复合纳米腔具有很好的相容性。提出的设计可以为单个磁盘腔之外的磁光域中的光-物质相互作用开辟一条有希望的途径。可以通过理论计算来验证。进一步的仿真表明,复合纳米腔体在较大的孔尺寸上具有更好的耐受性,从而减少了结构制造和发射极载荷方面的实验困难。此外,研究了珀塞尔因数对偶极子方向的依赖性,证明了复合纳米腔具有很好的相容性。提出的设计可以为单个磁盘腔之外的磁光域中的光-物质相互作用开辟一条有希望的途径。研究了赛尔因子对偶极子取向的依赖性,证明了复合纳米腔具有很好的相容性。提出的设计可以为单个磁盘腔之外的磁光域中的光-物质相互作用开辟一条有希望的途径。研究了赛尔因子对偶极子取向的依赖性,证明了复合纳米腔具有很好的相容性。提出的设计可以为单个磁盘腔之外的磁光域中的光-物质相互作用开辟一条有希望的途径。
更新日期:2020-03-02
down
wechat
bug