当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Effect of outlet diameter on atomization characteristics and dust reduction performance of X-swirl pressure nozzle
Process Safety and Environmental Protection ( IF 4.966 ) Pub Date : 2020-02-29 , DOI: 10.1016/j.psep.2020.02.036
Pengfei Wang; Han Han; Ronghua Liu; Runze Gao; Gaogao Wu

In this study, experimental studies on the atomization characteristics and dust reduction performance of six different X-swirl nozzles with different outlet diameters were performed. The results of the nozzle atomization characteristics shows that, as the diameter of the nozzle increased, the flow rate of the nozzle gradually increased, while the flow coefficient kept decreasing almost linearly. Meanwhile, with the increase of the outlet diameter, the nozzle range and droplet velocity decreased continuously, while atomization angle and droplet size exhibited an increasing trend in general. From results of the dust-reduction experiment, considering the dust-reduction efficiency and water consumption, it is more appropriate to select a nozzle with an outlet diameter of 1.2 mm when the water supply pressure is higher than 4.0 MPa. When the water supply pressure was low, as the diameter of the outlet increased, the dust-reduction efficiencies of the nozzle for both the total dust and the respirable dust increased significantly. Therefore, under low water supply pressure, when the water consumption at the engineering application site is not limited, using a nozzle with a larger outlet diameter can achieve higher dust-reduction efficiency.

更新日期:2020-03-02

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
北大
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug