当前位置: X-MOL 学术Wear › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis for investigating wheel-rail impact contact in a flange bearing frog crossing
Wear ( IF 5.3 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.wear.2020.203253
Jingmang Xu , Yuan Gao , Ping Wang , Boyang An , Jiayin Chen , Rong Chen

Abstract The transition of wheel-rail contact point between the wheel tread and wheel flange in a flange bearing frog crossing (FBFC) is more complex than in a common crossing, which causes severe frictional rolling contact behavior and wheel-rail dynamic impact. This paper presents an analysis of the transient wheel-rail frictional rolling impact contact using an explicit finite element model of the dynamic interaction between the wheel and FBFC. This study adopts measured wheel geometry and an elastic-plastic material model for the simulations to provide an comprehensive understanding of the transient contact behavior of wheel-FBFC impacts. Each simulation calculates the evolution of the wheel-rail contact force, the distribution of micro-slips, and the stress during the wheel-FBFC impact. Then the contact damage mechanism is investigated and evaluated with the Zobory frictional wear model and “Layer” rolling contact fatigue model. The simulation results show that the irregular structure of the flange bearing frog crossing causes significant wheel-rail dynamic interaction, with the maximum wheel-rail force occurring in the bearing flangeway. The ratio of the tangential contact force to the normal contact force can be exacerbated by the geometric discontinuity of the crossings during impact. The main failure mechanism for different sections in the flange bearing frog crossing is different.

中文翻译:

法兰轴承蛙式交叉口轮轨碰撞接触数值分析

摘要 法兰轴承蛙式交叉(FBFC)中车轮踏面与轮缘之间轮轨接触点的过渡比普通交叉更复杂,会导致严重的摩擦滚动接触行为和轮轨动态冲击。本文使用车轮和 FBFC 之间动态相互作用的显式有限元模型,对瞬态轮轨摩擦滚动冲击接触进行了分析。本研究采用测量的车轮几何形状和弹塑性材料模型进行模拟,以全面了解车轮-FBFC 冲击的瞬态接触行为。每次模拟都会计算轮轨接触力的演变、微滑移的分布以及车轮与 FBFC 碰撞过程中的应力。然后使用Zobory摩擦磨损模型和“层”滚动接触疲劳模型研究和评估接触损伤机制。仿真结果表明,轴承法兰盘的不规则结构引起了显着的轮轨动力相互作用,最大的轮轨力发生在轴承法兰处。切向接触力与法向接触力的比率会因碰撞期间交叉点的几何不连续性而加剧。法兰轴承蛙跨中不同断面的主要失效机理是不同的。最大轮轨力出现在轴承法兰中。切向接触力与法向接触力的比率会因碰撞期间交叉点的几何不连续性而加剧。法兰轴承蛙跨中不同断面的主要失效机理是不同的。最大轮轨力出现在轴承法兰中。切向接触力与法向接触力的比率会因碰撞期间交叉点的几何不连续性而加剧。法兰轴承蛙跨中不同断面的主要失效机理是不同的。
更新日期:2020-06-01
down
wechat
bug