当前位置: X-MOL 学术Spectrosc. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Near-infrared spectroscopy to assess typhaneoside and isorhamnetin-3-O-glucoside in different processed products of pollen typhae
Spectroscopy Letters ( IF 1.1 ) Pub Date : 2019-08-09 , DOI: 10.1080/00387010.2019.1655653
Fei Sun 1, 2, 3 , Weijun Zhao 1 , Kaiyang Wang 1 , Shumei Wang 1, 2, 3 , Shengwang Liang 1, 2, 3
Affiliation  

Abstract With the ever increasing importance of testing drug quality, rapid analytical methods are needed for supervision of Chinese herbal medicines. Near-infrared spectroscopy is one of the most powerful tools in quality assessment of Chinese herbal medicines. In this work, near-infrared spectroscopy was applied to develop a rapid method for quantitative determination of typhaneoside and isorhamnetin-3-O-glucoside in different processed products of Pollen Typhae. A total of 71 batches of samples were collected from different regions in China. After acquisition of near-infrared spectra, different pre-processing methods were compared, and a competitive adaptive reweighted sampling algorithm was used to perform the variable selection. Then a partial least squares regression algorithm was applied to build the quantitative models. The root mean square error of calibration, root mean square error of cross validation, and root mean square error of prediction were 0.0190, 0.0364, and 0.0158%, respectively, for a quantitative model of typhaneoside. The root mean square error of calibration, root mean square error of cross validation, and root mean square error of prediction were 0.0190, 0.0377, and 0.0170%, respectively, for a quantitative model of isorhamnetin-3-O-glucoside. Moreover, the relative prediction deviation values of both quantitative models were larger than 3, indicating good performance of the partial least squares (PLS) models. The results demonstrated that high accuracy prediction of typhaneoside and isorhamnetin-3-O-glucoside could be obtained by near-infrared spectroscopy, to allow an alternative method for quality assessment of different processed products of Pollen Typhae.
更新日期:2019-08-09
down
wechat
bug