当前位置: X-MOL 学术Curr. Opin. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The impact of molecular simulations in gas-phase manufacture of nanomaterials
Current Opinion in Chemical Engineering ( IF 8.0 ) Pub Date : 2019-05-31 , DOI: 10.1016/j.coche.2019.04.006
Vlasis G Mavrantzas , Sotiris E Pratsinis

Progress in molecular modeling for aerosol process design during synthesis of nanomaterials is highlighted for understanding, tuning, and eventually engineering their promising (and, often, only partially known) properties. Atomistic molecular dynamics (MD) and Monte Carlo (MC) simulations unravel the fundamentals of the major physicochemical processes dominating the manufacture of these materials, thus facilitating and accelerating their scale-up and process innovation. They reveal, for example: a) how surface diffusion dominates the early stages of coalescence and fusion of inorganic nanoparticles, b) how a certain metal (e.g. silver) can occupy preferentially the surface of its nanoalloys with another (e.g. copper or gold), and c) how agglomerates of polydisperse primary particles settle faster than those with monodisperse. Having reached a state of maturity today, molecular simulations offer effective tools for controlling nanoparticle structure and morphology from first principles whereby chemical engineers and other scientists can judiciously design processes impacting diverse fields. Distinct examples of technological interest in biomedical engineering (e.g. protein–nanoparticle interactions), electronics, catalysis and bio-sensing are thus presented and discussed.



中文翻译:

分子模拟对气相制备纳米材料的影响

重点介绍了在纳米材料合成过程中进行气溶胶工艺设计的分子建模技术,以了解,调整并最终设计其有前途的(通常是部分已知的)特性。原子分子动力学(MD)和蒙特卡洛(MC)模拟揭示了主导这些材料制造的主要物理化学过程的基础,从而促进并加速了它们的放大和工艺创新。例如,它们揭示了:a)表面扩散如何主导无机纳米颗粒的聚结和融合的早期阶段,b)某种金属(例如银)如何优先与另一种金属(例如铜或金)一起占据其纳米合金的表面, c)多分散一次颗粒的团聚比单分散一次的团聚更快。如今,分子模拟已达到成熟状态,从最初的原理开始,提供了有效的工具来控制纳米颗粒的结构和形态,化学工程师和其他科学家可以明智地设计影响各个领域的过程。因此,将介绍和讨论生物医学工程领域(例如蛋白质与纳米粒子的相互作用),电子学,催化作用和生物传感技术兴趣的独特例子。

更新日期:2019-05-31
down
wechat
bug