当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bromination: An Alternative Strategy for Non-Fullerene Small Molecule Acceptors.
Advanced Science ( IF 14.3 ) Pub Date : 2020-02-28 , DOI: 10.1002/advs.201903784
Huan Wang 1, 2 , Tao Liu 1 , Jiadong Zhou 3 , Daize Mo 1 , Liang Han 1 , Hanjian Lai 1 , Hui Chen 1 , Nan Zheng 3 , Yulin Zhu 1 , Zengqi Xie 3 , Feng He 1
Affiliation  

The concept of bromination for organic solar cells has received little attention. However, the electron withdrawing ability and noncovalent interactions of bromine are similar to those of fluorine and chlorine atoms. A tetra-brominated non-fullerene acceptor, designated as BTIC-4Br, has been recently developed by introducing bromine atoms onto the end-capping group of 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile and displayed a high power conversion efficiency (PCE) of 12%. To further improve its photovoltaic performance, the acceptor is optimized either by introducing a longer alkyl chain to the core or by modulating the numbers of bromine substituents. After changing each end-group to a single bromine, the BTIC-2Br-m-based devices exhibit an outstanding PCE of 16.11% with an elevated open-circuit voltage of V oc = 0.88 V, one of the highest PCEs reported among brominated non-fullerene acceptors. This significant improvement can be attributed to the higher light harvesting efficiency, optimized morphology, and higher exciton quenching efficiencies of the di-brominated acceptor. These results demonstrate that the substitution of bromine onto the terminal group of non-fullerene acceptors results in high-efficiency organic semiconductors, and promotes the use of the halogen-substituted strategy for polymer solar cell applications.

中文翻译:

溴化:非富勒烯小分子受体的替代策略。

有机太阳能电池的溴化概念很少受到关注。然而,溴的吸电子能力和非共价相互作用与氟和氯原子相似。最近通过将溴原子引入到2-(3-氧代-2,3-二氢-1H-茚-1-亚基的封端基团上,开发了一种四溴化非富勒烯受体,命名为BTIC-4Br )丙二腈并表现出12%的高功率转换效率(PCE)。为了进一步提高其光伏性能,通过向核心引入更长的烷基链或通过调节溴取代基的数量来优化受体。将每个端基更改为单个溴后,基于 BTIC-2Br-m 的器件表现出 16.11% 的出色 PCE,开路电压 V oc = 0.88 V,是溴化非非溴化器件中报告的最高 PCE 之一。 -富勒烯受体。这种显着的改进可归因于二溴化受体更高的光捕获效率、优化的形态和更高的激子猝灭效率。这些结果表明,将溴取代到非富勒烯受体的端基上可产生高效有机半导体,并促进卤素取代策略在聚合物太阳能电池应用中的使用。
更新日期:2020-02-28
down
wechat
bug