当前位置: X-MOL 学术Atmos. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Satellite-observed warm-core structure in relation to tropical cyclone intensity change
Atmospheric Research ( IF 4.5 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.atmosres.2020.104931
Xiang Wang , Haiyan Jiang , Jun A. Zhang , Ke Peng

Abstract Using a 13-year dataset of Atmospheric Infrared Sounder (AIRS) retrieved temperature profiles including 5019 AIRS overpasses in 1061 tropical storm through category-2 tropical cyclones (TCs) in global basins during 2002–2014, this study examines the relationship between the warm-core structure and TC intensity change with a focus on rapid intensification (RI). The AIRS TC overpasses are classified into RI, slowly intensifying (SI), neutral (N), and weakening (W) categories. The effect of the warm-core structure upon TC intensification is entangled with that upon TC intensity. It is necessary to exclude the weakening category in order to single out the relationship between TC intensification and warm-core structure from a statistical method. The composite warm-core maximum temperature anomaly is the strongest in RI storms (~7 K), followed by W (~6 K), SI (~5 K) and N (~ 4 K) storms. RI storms have the highest equivalent potential temperature (θe) and CAPE in the eye among all intensity change categories. The warm-core structure of RI storms is asymmetric relative to shear, with the higher temperature anomaly and convective available potential energy (CAPE) located in the down-shear quadrant. When only considering samples with intensification rates ≥0, a significant and positive correlation is found between the warm-core strength and TC intensification rate. The warm-core height is also positively correlated with the TC intensification rate at a high confidence level. The AIRS-derived warm-core temperature anomaly greater than 4 K and weighted warm-core height higher than 450 hPa are the necessary conditions for RI.

中文翻译:

卫星观测到的暖核结构与热带气旋强度变化的关系

摘要 本研究使用大气红外测深仪 (AIRS) 的 13 年数据集检索温度剖面,包括 2002-2014 年全球盆地中 1061 次热带风暴通过 2 类热带气旋 (TC) 的 5019 -核心结构和 TC 强度变化,重点是快速强化 (RI)。AIRS TC 立交桥分为 RI、缓慢增强 (SI)、中性 (N) 和减弱 (W) 类别。暖核结构对TC增强的影响与对TC强度的影响相互纠缠。为了从统计方法中挑出TC增强与暖核结构之间的关系,需要排除减弱类别。复合暖核最高温度异常在 RI 风暴(~7 K)中最强,其次是 W (~6 K)、SI (~5 K) 和 N (~ 4 K) 风暴。在所有强度变化类别中,RI 风暴在眼中具有最高的等效位温 (θe) 和 CAPE。RI风暴的暖核结构相对于剪切不对称,较高的温度异常和对流可用势能(CAPE)位于下剪切象限。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。在所有强度变化类别中,RI 风暴在眼中具有最高的等效位温 (θe) 和 CAPE。RI风暴的暖核结构相对于剪切不对称,较高的温度异常和对流可用势能(CAPE)位于下剪切象限。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。在所有强度变化类别中,RI 风暴在眼中具有最高的等效位温 (θe) 和 CAPE。RI风暴的暖核结构相对于剪切不对称,较高的温度异常和对流可用势能(CAPE)位于下剪切象限。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。RI风暴的暖核结构相对于剪切不对称,较高的温度异常和对流可用势能(CAPE)位于下剪切象限。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。RI风暴的暖核结构相对于剪切不对称,较高的温度异常和对流可用势能(CAPE)位于下剪切象限。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。当仅考虑增强率≥0的样本时,发现热核强度与TC增强率之间存在显着的正相关。在高置信水平下,暖核高度也与 TC 增强率呈正相关。AIRS衍生的暖核温度异常大于4 K和加权暖核高度高于450 hPa是RI的必要条件。
更新日期:2020-08-01
down
wechat
bug