当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
A multi-GPU implementation of a full-field crystal plasticity solver for efficient modeling of high-resolution microstructures
Computer Physics Communications ( IF 3.309 ) Pub Date : 2020-02-28 , DOI: 10.1016/j.cpc.2020.107231
Adnan Eghtesad; Kai Germaschewski; Ricardo A. Lebensohn; Marko Knezevic

In a recent publication (Eghtesad et al., 2018), we have reported a message passing interface (MPI)-based domain decomposition parallel implementation of an elasto-viscoplastic fast Fourier transform-based (EVPFFT) micromechanical solver to facilitate computationally efficient crystal plasticity modeling of polycrystalline materials. In this paper, we present major extensions to the previously reported implementation to take advantage of graphics processing units (GPUs), which can perform floating point arithmetic operations much faster than traditional central processing units (CPUs). In particular, the applications are developed to utilize a single GPU and multiple GPUs from one computer as well as a large number of GPUs across nodes of a supercomputer. To this end, the implementation combines the OpenACC programming model for GPU acceleration with MPI for distributed computing. Moreover, the FFT calculations are performed using the efficient Compute Unified Device Architecture (CUDA) FFT library, called CUFFT. Finally, to maintain performance portability, OpenACC-CUDA interoperability for data transfers between CPU and GPUs is used. The overall implementations are termed ACC-EVPCUFFT for single GPU and MPI-ACC-EVPCUFFT for multiple GPUs. To facilitate performance evaluation studies of the developed computational framework, deformation of a single phase copper is simulated, while to further demonstrate utility of the implementation for resolving fine microstructures, deformation of a dual-phase steel DP590 is simulated. The implementations and results are presented and discussed in this paper.
更新日期:2020-02-28

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug