当前位置: X-MOL 学术Phys. fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of non-hydrodynamic forces on the elastic response of an ultra-thin soft coating under fluid-mediated dynamic loading
Physics of Fluids ( IF 4.1 ) Pub Date : 2020-02-01 , DOI: 10.1063/1.5134149
P. Karan 1 , J. Chakraborty 1 , S. Chakraborty 1
Affiliation  

The force between two approaching solids in a liquid medium becomes increasingly large with decreasing separation, a phenomenon that prevents contact between the two solids. This growth in force occurs because of the intervening liquid, and, studies of such physical systems constitute the classical discipline of lubrication. Furthermore, when the solid(s) are soft, there are quantitative as well as qualitative alterations in the force interaction due to the solids' deformation. The underlying physics as well as resultant system behaviour are even more complex when forces of non-hydrodynamic origin come into play, two major classes of such forces being the DLVO (Derjaguin-Landau-Verwey-Overbeek) forces and the non-DLVO molecular forces. Studies assessing the coupling of these physical phenomenon are avenues of contemporary research. With this view, we perform an analytical study of fluid-mediated oscillatory motion of a rigid sphere over an ultra-thin soft coating, delineating the distinctive effects of solvation force as well as substrate compliance. Our key finding is the major augmentation in the force and substrate-deformation characteristics of the system due to solvation force when the confinement reduces to a few nanometers. Consideration of solvation force leads to upto four orders of magnitude and upto three orders of magnitude increment in force and substrate-deformation respectively. While higher softness leads to higher deformation (as expected), its effect on force and substrate-deformation characteristics exhibits a tendency towards amelioration of the increment due to solvation force.

中文翻译:

流体介导动态载荷下非流体动力对超薄软涂层弹性响应的影响

液体介质中两种接近的固体之间的力随着分离度的降低而变得越来越大,这种现象会阻止两种固体之间的接触。这种力的增长是由于液体的介入而发生的,对这种物理系统的研究构成了润滑的经典学科。此外,当固体是软的时,由于固体的变形,力相互作用会发生定量和定性的变化。当非流体动力来源的力发挥作用时,基础物理以及由此产生的系统行为更加复杂,此类力的两大类是 DLVO(Derjaguin-Landau-Verwey-Overbeek)力和非 DLVO 分子力. 评估这些物理现象耦合的研究是当代研究的途径。根据这一观点,我们对刚性球体在超薄软涂层上的流体介导振荡运动进行了分析研究,描绘了溶剂化力和基材柔顺性的独特影响。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响表现出由于溶剂化力而导致增量改善的趋势。我们对刚性球体在超薄软涂层上的流体介导振荡运动进行了分析研究,描绘了溶剂化力和基材顺应性的独特影响。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响表现出由于溶剂化力而导致增量改善的趋势。我们对刚性球体在超薄软涂层上的流体介导振荡运动进行了分析研究,描绘了溶剂化力和基材顺应性的独特影响。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响表现出由于溶剂化力而导致增量改善的趋势。描绘了溶剂化力和底物顺应性的独特影响。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响表现出由于溶剂化力而导致增量改善的趋势。描绘了溶剂化力和底物顺应性的独特影响。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响表现出由于溶剂化力而导致增量改善的趋势。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响表现出由于溶剂化力而导致增量改善的趋势。我们的主要发现是当限制减少到几纳米时,由于溶剂化力,系统的力和基板变形特性的主要增强。考虑溶解力会导致力和基材变形分别增加四个数量级和三个数量级。虽然更高的柔软度会导致更高的变形(如预期的那样),但它对力和基材变形特性的影响呈现出由于溶剂化力而改善增量的趋势。
更新日期:2020-02-01
down
wechat
bug