当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
ACS Sensors ( IF 8.2 ) Pub Date : 2020-02-26 , DOI: 10.1021/acssensors.9b01941
Tetsuya Watabe 1 , Kenta Terai 2 , Kenta Sumiyama 3 , Michiyuki Matsuda 1, 2
Affiliation  

Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been developed for the visualization of signaling molecule activities. Currently, most of them are comprised of cyan and yellow fluorescent proteins (CFP and YFP), precluding the use of multiple FRET biosensors within a single cell. Moreover, the FRET biosensors based on CFP and YFP are incompatible with the optogenetic tools that operate at blue light. To overcome these problems, here, we have developed FRET biosensors with red-shifted excitation and emission wavelengths. We chose mKOκ and mKate2 as the favorable donor and acceptor pair by calculating the Förster distance. By optimizing the order of fluorescent proteins and modulatory domains of the FRET biosensors, we developed a FRET biosensor backbone named "Booster". The performance of the protein kinase A (PKA) biosensor based on the Booster backbone (Booster-PKA) was comparable to that of AKAR3EV, a previously developed FRET biosensor comprising CFP and YFP. For the proof of concept, we first showed simultaneous monitoring of activities of two protein kinases with Booster-PKA and ERK FRET biosensors based on CFP and YFP. Second, we showed monitoring of PKA activation by Beggiatoa photoactivated adenylyl cyclase, an optogenetic generator of cyclic AMP. Finally, we presented PKA activity in living tissues of transgenic mice expressing Booster-PKA. Collectively, the results demonstrate the effectiveness and versatility of Booster biosensors as an imaging tool in vitro and in vivo.

中文翻译:

Booster,与蓝绿色荧光蛋白/基于黄色荧光蛋白的FRET生物传感器和蓝光响应光遗传学工具兼容的红移遗传编码的Förster共振能量转移(FRET)生物传感器。

已经开发了基于遗传编码的Förster共振能量转移(FRET)的生物传感器,用于可视化信号分子的活动。目前,它们中的大多数由青色和黄色荧光蛋白(CFP和YFP)组成,这排除了在单个细胞内使用多个FRET生物传感器的可能性。此外,基于CFP和YFP的FRET生物传感器与在蓝光下工作的光遗传学工具不兼容。为了克服这些问题,在这里,我们开发了具有红移激发和发射波长的FRET生物传感器。通过计算Förster距离,我们选择mKOκ和mKate2作为有利的供体和受体对。通过优化荧光蛋白的顺序和FRET生物传感器的调节域,我们开发了一个名为“ Booster”的FRET生物传感器骨架。基于Booster骨架的蛋白激酶A(PKA)生物传感器(Booster-PKA)的性能与AKAR3EV相当,后者是先前开发的包含CFP和YFP的FRET生物传感器。为了证明概念,我们首先展示了使用Booster-PKA和基于CFP和YFP的ERK FRET生物传感器同时监测两种蛋白激酶的活性。其次,我们显示了由Beggiatoa光活化的腺苷酸环化酶(一种环状AMP的光遗传学生成器)对PKA活化的监测。最后,我们介绍了表达Booster-PKA的转基因小鼠的活组织中的PKA活性。总体而言,结果证明了Booster生物传感器作为体外和体内成像工具的有效性和多功能性。先前开发的包含CFP和YFP的FRET生物传感器。为了证明概念,我们首先展示了使用Booster-PKA和基于CFP和YFP的ERK FRET生物传感器同时监测两种蛋白激酶的活性。其次,我们显示了由Beggiatoa光活化的腺苷酸环化酶(一种环状AMP的光遗传学生成器)对PKA活化的监测。最后,我们介绍了表达Booster-PKA的转基因小鼠的活组织中的PKA活性。总体而言,结果证明了Booster生物传感器作为体外和体内成像工具的有效性和多功能性。先前开发的包含CFP和YFP的FRET生物传感器。为了证明概念,我们首先展示了使用Booster-PKA和基于CFP和YFP的ERK FRET生物传感器同时监测两种蛋白激酶的活性。其次,我们显示了由Beggiatoa光活化的腺苷酸环化酶(一种环状AMP的光遗传学生成器)对PKA活化的监测。最后,我们介绍了表达Booster-PKA的转基因小鼠的活组织中的PKA活性。总体而言,结果证明了Booster生物传感器作为体外和体内成像工具的有效性和多功能性。我们显示了由Beggiatoa光活化的腺苷酸环化酶(一种环状AMP的光遗传学生成器)监控的PKA活化。最后,我们介绍了表达Booster-PKA的转基因小鼠的活组织中的PKA活性。总体而言,结果证明了Booster生物传感器作为体外和体内成像工具的有效性和多功能性。我们显示了由Beggiatoa光活化的腺苷酸环化酶(一种环状AMP的光遗传学生成器)监控的PKA活化。最后,我们介绍了表达Booster-PKA的转基因小鼠的活组织中的PKA活性。总体而言,结果证明了Booster生物传感器作为体外和体内成像工具的有效性和多功能性。
更新日期:2020-02-26
down
wechat
bug