当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preparation of LiFe1-xMnxPO4/C cathode materials at a pH of 6.5 using a hydrothermal process with high-temperature calcination
Thin Solid Films ( IF 2.0 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.tsf.2020.137890
Wen-Chen Chien , Zong-Ming Hsieh

Abstract In this study, manganese ion-doped lithium iron phosphate/carbon (LiFe1-xMnxPO4/C, LF1-xMxP/C) composite cathode materials with different Mn2+ doping levels (x = 0,0.03,0.05,0.07, and 0.10) were synthesized using a hydrothermal process combined with high-temperature calcination. Loss during the calcination was compensated for by using 3 at.% of excess lithium. Acetic acid or ammonium hydroxide was used to adjust the initial pH value of the hydrothermal solution to 6.5. The results revealed that the LF0.93M0.07P/C composite cathode material had the most favorable electrochemical performance and delivered the highest discharge capacities at different C-rates: 140.8 mAh/g at 0.2 C, 135.8 mAh/g at 0.5 C, 123.6 mAh/g at 1 C, 101.2 mAh/g at 3 C, 88.1 mAh/g at 5 C, and 69.5 mAh/g at 10 C. In addition, the capacity retention rate of 96.5% for LF0.93M0.07P/C after 100 cycles at 1 C–1 C was higher than the 86.5% for the pristine LiFePO4/C under the same C-rate and cycle number conditions. Moreover, the electrochemical performance of LF0.93M0.07P/C was noticeably improved by adding 1 wt% of graphene. Therefore, an appropriate amount of Mn2+ doping could effectively improve the electrochemical performance of the pristine LiFePO4/C cathode materials, particularly the electrochemical performance at a high C-rate, due to the increase in electronic and ionic transportation attributed to the addition of graphene and substitution of Mn2+ for Fe2+ in LiFePO4/C cathode materials.

中文翻译:

使用高温煅烧水热法制备 pH 为 6.5 的 LiFe1-xMnxPO4/C 正极材料

摘要 在本研究中,锰离子掺杂磷酸铁锂/碳(LiFe1-xMnxPO4/C,LF1-xMxP/C)复合正极材料具有不同的 Mn2+ 掺杂水平(x = 0、0.03、0.05、0.07 和 0.10)。使用水热法结合高温煅烧合成。通过使用 3 at.% 的过量锂来补偿煅烧过程中的损失。使用乙酸或氢氧化铵将水热溶液的初始pH值调节至6.5。结果表明,LF0.93M0.07P/C 复合正极材料具有最佳的电化学性能,并在不同的 C 倍率下提供最​​高的放电容量:0.2 C 时为 140.8 mAh/g,0.5 C 时为 135.8 mAh/g,123.6 1 C 时为 mAh/g,3 C 时为 101.2 mAh/g,5 C 时为 88.1 mAh/g,10 C 时为 69.5 mAh/g。此外,LF0 的容量保持率为 96.5%。93M0.07P/C 在 1 C–1 C 下 100 次循环后高于原始 LiFePO4/C 在相同 C 速率和循环次数条件下的 86.5%。此外,通过添加 1 wt% 的石墨烯,LF0.93M0.07P/C 的电化学性能得到显着改善。因此,适量的 Mn2+ 掺杂可以有效地提高原始 LiFePO4/C 正极材料的电化学性能,特别是在高 C 倍率下的电化学性能,这是由于添加石墨烯和LiFePO4/C 正极材料中 Mn2+ 替代 Fe2+。07P/C 通过添加 1 wt% 的石墨烯得到显着改善。因此,适量的 Mn2+ 掺杂可以有效地提高原始 LiFePO4/C 正极材料的电化学性能,特别是在高 C 倍率下的电化学性能,这是由于添加石墨烯和LiFePO4/C 正极材料中 Mn2+ 替代 Fe2+。07P/C 通过添加 1 wt% 的石墨烯得到显着改善。因此,适量的 Mn2+ 掺杂可以有效地提高原始 LiFePO4/C 正极材料的电化学性能,特别是在高 C 倍率下的电化学性能,这是由于添加石墨烯和LiFePO4/C 正极材料中 Mn2+ 替代 Fe2+。
更新日期:2020-04-01
down
wechat
bug