当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium–sulfur batteries
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2020-02-26 , DOI: 10.1016/j.jechem.2020.02.030
Wenhao Sun , Xiaogang Sun , Naseem Akhtar , Chengming Li , Weikun Wang , Anbang Wang , Kai Wang , Yaqin Huang

Lithium–sulfur (Li–S) batteries have been recognized as one of the most promising candidates for next-generation portable electronic devices, owing to their extremely high energy density and low cost. However, the dissolution of lithium polysulfides (LiPSs) and consequent “shuttle effect” seriously hinder the practical deployment of Li–S batteries. Herein, multi-metal oxide nanorods named attapulgite are proposed as multifunctional ionic sieve to immobilize LiPSs and further promote the regulation of LiPSs. Attapulgite, consisting of Al, Mg, Fe, Si and O ions, possesses more polar sites to immobilize LiPSs in comparison with single metal oxides. In addition, the catalytic nature (Fe ions) of attapulgite avails the LiPSs conversion reaction, which is further confirmed by the linear sweep voltammetry and electrochemical impedance spectroscopy. Benefited from the synergistic effect of multi-metal oxide and conductive carbon, the Li–S battery with the modified separator delivers remarkable discharge capacities of 1059.4 mAh g−1 and 792.5 mAh g−1 for the first and 200th cycle at 0.5 C, respectively. The work presents an effective way to improve the electrochemical performance of Li–S batteries by employing attapulgite nanorods assisted separator surface engineering.



中文翻译:

凹凸棒纳米棒辅助隔板的表面工程设计,以实现高性能锂硫电池

锂硫(Li–S)电池由于其极高的能量密度和低成本而被公认为是下一代便携式电子设备最有希望的候选者之一。但是,多硫化锂(LiPSs)的溶解和随之产生的“穿梭效应”严重阻碍了Li-S电池的实际部署。在本文中,提出了名为凹凸棒石的多金属氧化物纳米棒作为多功能离子筛,以固定LiPS并进一步促进LiPS的调节。与单金属氧化物相比,由铝,镁,铁,硅和氧离子组成的凹凸棒石具有更多的极性位点来固定LiPS。另外,凹凸棒石的催化性质(Fe离子)利用LiPSs转化反应,这通过线性扫描伏安法和电化学阻抗谱进一步证实。在0.5 C下的第一次循环和第200次循环时分别为-1和792.5 mAh g -1。这项工作提出了一种利用凹凸棒石纳米棒辅助的隔板表面工程技术来改善Li-S电池电化学性能的有效方法。

更新日期:2020-02-26
down
wechat
bug