当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: Batch and column studies
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.psep.2020.02.032
Zong-Han Yang , Francis Verpoort , Cheng-Di Dong , Chiu-Wen Chen , Shaohua Chen , Chih-Ming Kao

Abstract In this study, Fenton oxidation and activated persulfate oxidation were used to investigate the optimized in situ chemical oxidation (ISCO) process for its efficiency on petroleum-hydrocarbon contaminated groundwater cleanup. In the batch and column experiments using benzene and toluene as the target compounds, oxidant depletion, soil oxidant demand (SOD), adsorption of oxidant on soils, and oxidation kinetics were studied. Results show that Fenton oxidation process was more catalytic than activated persulfate oxidation by ferrous iron catalysis. Higher SOD value was obtained for H2O2 than persulfate because H2O2 had higher reactivity to soil organic matter. In addition, increased benzene and toluene oxidation rates were observed with increased concentrations of H2O2 and persulfate oxidants. The calculated pseudo first-order decay rate constants (k’) for Fenton and activated persulfate oxidation processes were 1.65 and 0.13 1/h for benzene and 1.28 and 0.1 1/h for toluene, respectively. Compared to persulfate oxidation, results indicate that Fenton oxidation had much higher reaction rates on petroleum hydrocarbon oxidation. Results from the column experiment show that up to 5.94 pore volumes (PVs) of H2O2 solution and 12.85 PVs of persulfate solution were required to cleanup benzene and toluene contaminated groundwater with an oxidant concentration of 10 wt%, ferrous iron concentration of 100 mg/L, and initial contaminant concentration of 50 mg/L. Results indicate that the Fenton oxidation process would be a more practical and efficient approach to remediate petroleum-hydrocarbon contaminated groundwater. The results would be useful in developing an ISCO system for a practical field application to cleanup benzene and toluene contaminated groundwater.

中文翻译:

使用优化的原位化学氧化系统修复石油烃污染的地下水:批量和柱状研究

摘要 在这项研究中,芬顿氧化和活化过硫酸盐氧化被用来研究优化的原位化学氧化 (ISCO) 工艺对石油-烃污染地下水净化的效率。在以苯和甲苯为目标化合物的批次和柱实验中,研究了氧化剂消耗、土壤氧化剂需求(SOD)、氧化剂在土壤上的吸附和氧化动力学。结果表明,Fenton氧化过程比亚铁催化的活化过硫酸盐氧化更具催化性。H2O2 的 SOD 值高于过硫酸盐,因为 H2O2 对土壤有机质具有更高的反应性。此外,随着 H2O2 和过硫酸盐氧化剂浓度的增加,观察到苯和甲苯的氧化速率增加。芬顿和活化过硫酸盐氧化过程的计算伪一级衰减速率常数 (k') 分别为苯的 1.65 和 0.13 1/h 和甲苯的 1.28 和 0.1 1/h。与过硫酸盐氧化相比,结果表明芬顿氧化对石油烃氧化具有更高的反应速率。柱实验结果表明,在氧化剂浓度为 10 wt%、亚铁浓度为 100 mg/L 的情况下,净化苯和甲苯污染的地下水需要高达 5.94 孔体积 (PVs) 的 H2O2 溶液和 12.85 PVs 的过硫酸盐溶液, 初始污染物浓度为 50 mg/L。结果表明,芬顿氧化工艺将是一种更实用、更有效的修复石油烃污染地下水的方法。
更新日期:2020-06-01
down
wechat
bug