当前位置: X-MOL 学术Engineering › 论文详情
An Investigation of Creep Resistance in Grade 91 Steel through Computational Thermodynamics
Engineering ( IF 4.568 ) Pub Date : 2019-12-11 , DOI: 10.1016/j.eng.2019.12.004
Andrew Smith; Mohammad Asadikiya; Mei Yang; Jiuhua Chen; Yu Zhong

This study was conducted to understand the relationship between various critical temperatures and the stability of the secondary phases inside the heat-affected-zone (HAZ) of welded Grade 91 (Gr.91) steel parts. Type IV cracking has been observed in the HAZ, and it is widely accepted that the stabilities of the secondary phases in Gr.91 steel are critical to the creep resistance, which is related to the crack failure of this steel. In this work, the stabilities of the secondary phases, including those of the M23C6, MX, and Z phases, were simulated by computational thermodynamics. Equilibrium cooling and Scheil simulations were carried out in order to understand the phase stability in welded Gr.91 steel. The effect of four critical temperatures—that is, Ac1 (the threshold temperature at which austenite begins to form), Ac3 (the threshold temperature at which ferrite is fully transformed into austenite), and the M23C6 and Z phase threshold temperatures—on the thickness of the HAZ and phase stability in the HAZ is discussed. Overall, the simulations presented in this paper explain the mechanisms that can affect the creep resistance of Gr.91 steel, and can offer a possible solution to the problem of how to increase creep resistance at elevated temperatures by optimizing the steel composition, welding, and heat treatment process parameters. The simulation results from this work provide guidance for future alloy development to improve creep resistance in order to prevent type IV cracking.
更新日期:2020-03-27

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug