当前位置: X-MOL 学术arXiv.cs.AR › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimality Study of Existing Quantum Computing Layout Synthesis Tools
arXiv - CS - Hardware Architecture Pub Date : 2020-02-22 , DOI: arxiv-2002.09783
Bochen Tan, Jason Cong

Layout synthesis, an important step in quantum computing, processes quantum circuits to satisfy device layout constraints. In this paper, we construct QUEKO benchmarks for this problem, which have known optimal depths and gate counts. We use QUEKO to evaluate the optimality of current layout synthesis tools, including Cirq from Google, Qiskit from IBM, $\mathsf{t}|\mathsf{ket}\rangle$ from Cambridge Quantum Computing, and recent academic work. To our surprise, despite over a decade of research and development by academia and industry on compilation and synthesis for quantum circuits, we are still able to demonstrate large optimality gaps: 1.5-12x on average on a smaller device and 5-45x on average on a larger device. This suggests substantial room for improvement of the efficiency of quantum computer by better layout synthesis tools. Finally, we also prove the NP-completeness of the layout synthesis problem for quantum computing. We have made the QUEKO benchmarks open-source.

中文翻译:

现有量子计算版图综合工具的优化研究

布局合成是量子计算的一个重要步骤,它处理量子电路以满足器件布局约束。在本文中,我们为这个问题构建了 QUEKO 基准,它具有已知的最佳深度和门数。我们使用 QUEKO 来评估当前布局综合工具的最优性,包括来自谷歌的 Cirq、来自 IBM 的 Qiskit、来自剑桥量子计算的 $\mathsf{t}|\mathsf{ket}\rangle$ 以及最近的学术工作。令我们惊讶的是,尽管学术界和工业界对量子电路的编译和合成进行了十多年的研究和开发,我们仍然能够证明巨大的优化差距:在较小的设备上平均为 1.5-12 倍,在较小的设备上平均为 5-45 倍。更大的设备。这表明通过更好的布局合成工具提高量子计算机效率的空间很大。最后,我们还证明了量子计算布局综合问题的 NP 完备性。我们已将 QUEKO 基准测试开源。
更新日期:2020-08-03
down
wechat
bug