当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of Au Network by Low-degree Solid State Dewetting: Continuous Plasmon Resonance over Visible to Infrared Region
Acta Materialia ( IF 8.3 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.actamat.2020.02.050
Jiliang Liu , Lingling Chu , Zhao Yao , Sui Mao , Zhijun Zhu , Jihoon Lee , Jiuxing Wang , Laurence A. Belfiore , Jianguo Tang

Abstract Solid state dewetting (SSD) of thin-film can trigger morphology evolution from continuous film to isolated nanostructures over percolation threshold. However, the Au thin-film fabricated by low-degree SSD, namely Au network nanostructures, showed a wider plasmon absorption over visible and mid-infrared region as compared to the fully-developed nanoparticles. The optical properties of Au networks is systematically investigated by assistant of finite difference-time domain (FDTD) analysis in terms of E-field distribution and extinction efficiency. It is shown that the semi-manufactured irregular nanostructure possess strong plasmon resonance even at the wavelength up to 1900 nm. The monochromic plasmon responds of corresponding low-developed and high-developed samples are examined by surface enhanced Raman spectroscopy with 532 nm laser excitation. And for polychromic light, solar simulator was employed to evaluate the photocurrent performance of TiOx / Au network hybrid film. The results suggest the Au network have large potentials to be utilized under polychromic LSPR excitation scenes such as solar irradiation to improve the photoelectric properties.

中文翻译:

低度固态去湿法制备金网络:可见光至红外区域的连续等离子体共振

摘要 薄膜的固态去湿 (SSD) 可以触发从连续膜到孤立纳米结构超过渗透阈值的形态演变。然而,与完全开发的纳米粒子相比,由低度 SSD 制造的 Au 薄膜,即 Au 网络纳米结构,在可见光和中红外区域显示出更广泛的等离子体吸收。通过有限差分时域 (FDTD) 分析的辅助,系统地研究了 Au 网络的光学特性,包括电场分布和消光效率。结果表明,即使在高达 1900 nm 的波长下,半制成的不规则纳米结构也具有强烈的等离子体共振。用 532 nm 激光激发的表面增强拉曼光谱检查相应的低发展和高发展样品的单色等离子体响应。对于多色光,采用太阳模拟器评估TiOx/Au网络混合膜的光电流性能。结果表明,Au 网络在多色 LSPR 激发场景(如太阳辐射)下具有很大的潜力,可用于改善光电性能。
更新日期:2020-04-01
down
wechat
bug