当前位置: X-MOL 学术Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How to detect the cyclostationarity in heavy-tailed distributed signals
Signal Processing ( IF 4.4 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.sigpro.2020.107514
Piotr Kruczek , Radosław Zimroz , Agnieszka Wyłomańska

Abstract Many real phenomena exhibit non-Gaussian behavior. The non-Gaussianity is mainly manifested by impulsive behavior of the real signals that, typically is not visible in the Gaussian-based models. However, the non-Gaussian signals possess substantial analysis challenges to scientists and statisticians. In this paper, we examine the cyclostationary α − stable time series. The classical definition of the second-order cyclostationary models assumes the periodic behavior of the autocovariance function. However, for the general α − stable models the theoretical autocovariance is not finite, thus there is a need to extend the classical definition to the infinite-variance case. To properly define the cyclostationarity property in the general case, in this paper we propose to apply the autocodifference, as the general measure of interdependence for infinitely divisible models. We also present this measure as the appropriate tool for cyclic behavior identification in the case of the α − stable distribution. This paper is the continuation of the authors’ previous research, where the autocodifference was proposed as the measure of interdependence for continuous-time processes with infinite variance. The motivation of the paper is the condition monitoring area where the cyclic behavior identification of the vibration signal is the classical approach for local damage detection. The vibration signals measured on the machines are non-Gaussian, thus the classical methods for cyclic impulsive behavior recognition are not effective and the new methodology needs to be proposed.

中文翻译:

如何检测重尾分布信号的循环平稳性

摘要 许多真实现象表现出非高斯行为。非高斯性主要表现为真实信号的冲动行为,这在基于高斯的模型中通常是不可见的。然而,非高斯信号对科学家和统计学家来说具有实质性的分析挑战。在本文中,我们研究了循环平稳的 α - 稳定时间序列。二阶循环平稳模型的经典定义假设自协方差函数具有周期性行为。然而,对于一般的 α - 稳定模型,理论自协方差不是有限的,因此需要将经典定义扩展到无限方差的情况。为了在一般情况下正确定义循环平稳性,在本文中我们建议应用自编码差分,作为无限可分模型相互依赖的一般度量。我们还将此度量作为在 α - 稳定分布的情况下进行循环行为识别的适当工具。本文是作者先前研究的延续,其中自协差被提出作为具有无限方差的连续时间过程的相互依赖性的度量。本文的动机是状态监测领域,其中振动信号的循环行为识别是局部损伤检测的经典方法。在机器上测量的振动信号是非高斯的,因此循环脉冲行为识别的经典方法无效,需要提出新的方法。我们还将此度量作为在 α - 稳定分布的情况下进行循环行为识别的适当工具。本文是作者先前研究的延续,其中自协差被提出作为具有无限方差的连续时间过程的相互依赖性的度量。本文的动机是状态监测领域,其中振动信号的循环行为识别是局部损伤检测的经典方法。在机器上测量的振动信号是非高斯的,因此循环脉冲行为识别的经典方法无效,需要提出新的方法。我们还将此度量作为在 α - 稳定分布的情况下进行循环行为识别的适当工具。本文是作者先前研究的延续,其中自协差被提出作为具有无限方差的连续时间过程的相互依赖性的度量。本文的动机是状态监测领域,其中振动信号的循环行为识别是局部损伤检测的经典方法。在机器上测量的振动信号是非高斯的,因此循环脉冲行为识别的经典方法无效,需要提出新的方法。其中自共差被提议作为具有无限方差的连续时间过程的相互依赖性的度量。本文的动机是状态监测领域,其中振动信号的循环行为识别是局部损伤检测的经典方法。在机器上测量的振动信号是非高斯的,因此循环脉冲行为识别的经典方法无效,需要提出新的方法。其中自共差被提议作为具有无限方差的连续时间过程的相互依赖性的度量。本文的动机是状态监测领域,其中振动信号的循环行为识别是局部损伤检测的经典方法。在机器上测量的振动信号是非高斯的,因此循环脉冲行为识别的经典方法无效,需要提出新的方法。
更新日期:2020-07-01
down
wechat
bug