当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neural-network-predictor-based control for an uncertain multiple launch rocket system with actuator delay
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.ymssp.2019.106489
Bo Li , Xiaoting Rui , Wei Tian , Guangyu Cui

Abstract Development of multiple launch rocket system (MLRS) has been restricted for several decades due to the poor dispersion characteristics of rockets, which is caused by the orientation of the MLRS departing from that intended. Hence, it is vital to maintain the angles of MLRS at a desired value via a proper control strategy. In this paper, a new neural network predictive control is developed for orienting control of the MLRS with actuator delay. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, for cancelling the effects of nonlinearities and uncertainties, the concept of feedback linearization and a dynamic recurrent neural network are introduced. In addition, a modified Smith predictor is employed to maintain the desirable orienting performance in the occurrence of actuator delay. For the stability analysis, Lyapunov’s method is utilized to ensure uniform ultimate boundedness of the closed-loop system. The simulated and experimental results demonstrate the effectiveness of the proposed controller.

中文翻译:

基于神经网络预测器的具有致动器延迟的不确定多管火箭系统控制

摘要 多管火箭系统(MLRS)的发展由于火箭的分散特性差,这是由于多管火箭系统的定向偏离预期造成的,几十年来一直受到限制。因此,通过适当的控制策略将 MLRS 的角度保持在所需的值是至关重要的。在本文中,开发了一种新的神经网络预测控制,用于具有致动器延迟的 MLRS 的定向控制。首先,利用拉格朗日方法和磁场定向控制理论建立了电机-机械耦合系统的动力学模型。然后,为了消除非线性和不确定性的影响,引入了反馈线性化和动态递归神经网络的概念。此外,改进的史密斯预测器用于在发生致动器延迟时保持理想的定向性能。对于稳定性分析,利用李雅普诺夫方法来保证闭环系统的统一极限有界。仿真和实验结果证明了所提出的控制器的有效性。
更新日期:2020-07-01
down
wechat
bug