当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
From compound word to metropolitan station: Semantic similarity analysis using smart card data
Transportation Research Part C: Emerging Technologies ( IF 5.775 ) Pub Date : 2020-02-25 , DOI: 10.1016/j.trc.2020.02.017
Dingyi Zhuang; Siyu Hao; Der-Horng Lee; Jian Gang Jin

Rapid urbanization and modern civilization require sound integration with public transportation systems. In the same time, the volume and complexity of public transportation network are increasing, making it harder to understand the public transportation dynamics. As a first step, understanding the similarity among subway stations is imperative. In this paper, we proposed a semantic framework inspired from natural language processing (NLP) to interpret subway stations as compound words. Specifically, we transplanted context and literal meaning of compound words into mobility and location attributes of stations. Using smart card data, we trained stacked autoencoders (SAE) with designed flow matrices as an embedding method to learn the mobility attributes. Subsequently, to discover the location attributes, we have applied affinity propagation clustering to classify 9 point of interest (POI) categories. Combined with urban planning knowledge, we manage to comprehend the land use meanings of 9 POI clusters. The location semantics is chosen from those categories reflecting its urban land use pattern. By choose meaningful combination of mobility and location semantics for stations’ similarity case studies, we summarized potential applications of this semantic framework.
更新日期:2020-02-25

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug