当前位置: X-MOL 学术J. Approx. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bounds on autocorrelation coefficients of Rudin–Shapiro polynomials II
Journal of Approximation Theory ( IF 0.9 ) Pub Date : 2020-02-24 , DOI: 10.1016/j.jat.2020.105390
Stephen Choi

We study the (periodic) autocorrelation coefficients of the Rudin–Shapiro polynomials and prove that

Theorem. If Pn and Qn are the nth Rudin–Shapiro polynomials and |Pn(z)|2=k=Ln+1Ln1akzk,|z|=1 (a0=Ln, ak=ak, k1), then 0.27771487(1+o(1))|λ|nmax1kLn1|ak|(3.78207844)|λ|nwhere λ is the real root of x3x22x+4=0.

Also, if we let Pn¯Qn(z)=PnQn¯(1z)=k=Ln+1Ln1bkzk,|z|=1 (b0=2Ln, bk=bk¯, k1), then 0.46071984(1+o(1))|λ|nmax1kLn1|bk|(3.78207844)|λ|n, which was conjectured by Saffari (0000) [7] 40 years ago. This improves previous results in Allouche et al. (2019) and makes the upper bound of the correct order of infinity.



中文翻译:

Rudin–Shapiro多项式II的自相关系数的界

我们研究了Rudin–Shapiro多项式的(周期)自相关系数,并证明了

定理。 如果 Pñ ñ 是第n个Rudin–Shapiro多项式, |Pñž|2=ķ=-大号ñ+1个大号ñ-1个一种ķžķ|ž|=1个一种0=大号ñ一种ķ=一种-ķķ1个),然后 0277714871个+Ø1个|λ|ñ最高1个ķ大号ñ-1个|一种ķ|378207844|λ|ñ哪里 λ 是...的真正根源 X3-X2-2X+4=0

另外,如果我们让 Pñ¯ñž=Pññ¯1个ž=ķ=-大号ñ+1个大号ñ-1个bķžķ|ž|=1个b0=2-大号ñbķ=b-ķ¯ķ1个),然后 0460719841个+Ø1个|λ|ñ最高1个ķ大号ñ-1个|bķ|378207844|λ|ñ 这是40年前Saffari(0000)[7]的推测。这改善了Allouche等人的先前结果。(2019),并设定无穷大的正确阶数的上限。

更新日期:2020-02-24
down
wechat
bug