当前位置: X-MOL 学术IEEE Trans. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Operational Space Control Under Actuation Constraints Using Strictly Convex Optimization
IEEE Transactions on Robotics ( IF 9.4 ) Pub Date : 2020-02-01 , DOI: 10.1109/tro.2019.2943057
David J. Braun , Yuqing Chen , Linfeng Li

Operational space feedback controllers can be used for tracking, motion coordination, stabilization, and a variety of other practical tasks. However, classical operational space controllers are only applicable to fully actuated robots and do not take into account fundamental physical limitations affecting the actuators in practical application. Here, we present an online computable operational space controller that extends to underactuated and overactuated systems, and which takes actuator limitations rigorously into account. In the proposed formulation, the control inputs are computed using constrained quadratic programs that have the minimal number of decision variables, and are strictly convex by construction. The resulting feedback controller is efficiently computable, and is applicable to fully actuated, underactuated, and overactuated systems. This is demonstrated via numerical simulations and experiments using two torque controlled robots.

中文翻译:

使用严格凸优化的驱动约束下的操作空间控制

操作空间反馈控制器可用于跟踪、运动协调、稳定和各种其他实际任务。然而,经典的操作空间控制器仅适用于完全驱动的机器人,并没有考虑到实际应用中影响执行器的基本物理限制。在这里,我们提出了一个在线可计算操作空间控制器,它扩展到欠驱动和过驱动系统,并严格考虑了执行器的限制。在建议的公式中,控制输入是使用约束二次程序计算的,这些程序具有最少的决策变量,并且通过构造是严格凸的。由此产生的反馈控制器是可有效计算的,适用于全驱动、欠驱动、和过度驱动的系统。这是通过使用两个扭矩控制机器人的数值模拟和实验来证明的。
更新日期:2020-02-01
down
wechat
bug