当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core–shell nanowires with enhanced photoelectrochemical performance
Nanoscale ( IF 6.7 ) Pub Date : 2020/02/24 , DOI: 10.1039/c9nr10908k
Jia-Jia Tao 1, 2, 3, 4, 5 , Hong-Ping Ma 1, 2, 3, 4, 5 , Kai-Ping Yuan 1, 2, 3, 4, 5 , Yang Gu 1, 2, 3, 4, 5 , Jian-Wei Lian 1, 2, 3, 4, 5 , Xiao-Xi Li 1, 2, 3, 4, 5 , Wei Huang 1, 2, 3, 4, 5 , Michael Nolan 6, 7, 8, 9 , Hong-Liang Lu 1, 2, 3, 4, 5 , David-Wei Zhang 1, 2, 3, 4, 5
Affiliation  

As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core–shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core–shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm−2 (at 1.23 V vs. RHE) under AM 1.5 G irradiation (100 mW cm−2) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances the absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after the deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy–modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core–shell nanowires with ALD deposited GaOxNy demonstrate a good strategy for the fabrication of core–shell structures that enhance the photoelectrochemical performance of readily available photoanodes.

中文翻译:

通过原子层沉积用GaOxNy修饰一维TiO2纳米线,以增强TiO2 @ GaOxNy核壳纳米线的光电化学性能

作为能够催化氧释放反应的众所周知的半导体,TiO 2的太阳能光电化学水性质已被广泛研究。未改性的TiO 2表现出一些问题,特别是在其光电化学性能方面。在本文中,我们提出了一种利用原子层沉积法在TiO 2 1D纳米线上(TiO 2 @GaO x N y核-壳)控制沉积受控量的GaO x N y助催化剂的策略。我们表明,与纯TiO 2 NW光阳极相比,这种修饰显着增强了光电化学性能。对于我们最活性的TiO2条@GaO x N y核-壳纳米线,GaO x N y厚度为20 nm,在AM 1.5 G辐照下(100 mW cm -2),光电流密度高达1.10 mA cm -2(在1.23 V vs. RHE时))已实现,比未改性的TiO 2 NW高14倍。此外,与TiO 2匹配的带隙增强了未改性TiO 2的可见光吸收,并在沉积GaO x N y之后形成了容易形成的氧空位还提供了活化水的活性部位。GaO x N y改性的TiO 2模型系统的密度泛函理论研究证实了带隙减小,高还原性和活化水的能力。TiO 2的高效和稳定的系统2 @GaO X Ñ ý芯-壳纳米线沉积ALD高X Ñ ÿ证明对能够增强容易获得的光阳极的光电化学性能核-壳结构的制造一个好策略。
更新日期:2020-04-03
down
wechat
bug