当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO2 Photothermal Reduction: A Case of Atomic-Scale Dispersed Co–N Species Anchored Co@C Hybrid
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-02-21 , DOI: 10.1021/acscatal.9b04963
Shangbo Ning 1 , Hua Xu 2 , Yuhang Qi 1 , Lizhu Song 1 , Qiqi Zhang 1 , Shuxin Ouyang 1, 3 , Jinhua Ye 1, 4
Affiliation  

The transformation of CO2 into a single product is a critical scientific challenge because of the difficulty associated with targeted activation and conversion of CO2 by heterogeneous catalysts. Herein, we present an atomic-scale dispersed Co–N species anchored Co@C hybrid structure (entitled as Co@CoN&C) that regulates catalytic properties in thermodynamic and kinetic processes to achieve active and highly selective CO yield in the photothermal CO2 reduction. An optimal sample delivers the maximum yield rate of 132 mmol gcat.–1 h–1 and remarkable CO selectivity (91.1%), while the undesirable methanation activity, compared with typical Co nanoparticles (NPs), was suppressed. The mechanism study suggests that the strong photon–matter interaction over graphitic-carbon and Co NPs can enhance the light-to-heat conversion efficiency and thus induce the high work temperature, which is thermodynamically beneficial for CO2 activation and subsequently promoted the catalytic activity. Furthermore, the carbon layers improve the adsorption of CO2, and the surface atomically dispersed Co–N species weakens hydrogenation capability, which kinetically controls the reaction pathway and therefore attains the high selectivity for CO production. This study exemplifies that the microstructure design can modulate the thermodynamic and kinetic factors of photochemical reaction and thereby achieve potential solar-to-chemical energy conversion.

中文翻译:

微观结构诱导的热力学和动力学调节,以增强CO 2光热还原:原子级分散Co-N物种锚定Co @ C杂种的一例

由于与非均相催化剂的目标活化和转化CO 2有关的困难,将CO 2转化为单一产品是一项严峻的科学挑战。本文中,我们介绍了一种原子级分散的Co-N物种锚定的Co @ C杂化结构(称为Co @ CoN&C),该结构在热力学和动力学过程中调节催化性能,以实现光热CO 2还原中的活性和高选择性CO收率。最佳样品的最大产率为132 mmol g cat。–1小时–1和显着的CO选择性(91.1%),同时与典型的Co纳米颗粒(NPs)相比,不希望的甲烷化活性得到了抑制。机理研究表明,在石墨碳和Co NPs上的强光子-物质相互作用可以提高光热转换效率,从而诱导较高的工作温度,这在热力学上有利于CO 2活化并随后促进了催化活性。 。此外,碳层改善了对CO 2的吸附,并且表面原子分散的Co-N物种削弱了氢化能力,这在动力学上控制了反应路径,因此获得了高的CO选择性。这项研究表明,微结构设计可以调节光化学反应的热力学和动力学因素,从而实现潜在的太阳能转化为化学能。
更新日期:2020-02-21
down
wechat
bug