当前位置: X-MOL 学术Int. J. Approx. Reason. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Label distribution learning: A local collaborative mechanism
International Journal of Approximate Reasoning ( IF 3.2 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.ijar.2020.02.003
Suping Xu , Hengrong Ju , Lin Shang , Witold Pedrycz , Xibei Yang , Chun Li

Abstract Label distribution learning (LDL) is a generalized machine learning framework for dealing with label ambiguity, as it can explore the relative importance levels of different labels in the description of each sample. Although several algorithms have been proposed to solve LDL problems, they usually destroy the consistency of geometric structures between feature space and label space to a certain extent, which frequently plays a significant role in learning tasks. Meanwhile, most existing LDL algorithms only take predictive performances into consideration, while ignoring the computational cost and robustness to noises. To remedy above deficiencies, we propose a novel algorithm, i.e., Local Collaborative Representation based Label Distribution Learning, shortly LCR-LDL. In LCR-LDL, an unlabeled sample is treated as the collaborative representation of the local dictionary constructed by the neighborhood of the unlabeled sample, and the discriminatory information of representation coefficients is used to reconstruct the label distribution of the unlabeled sample. Experimental results on 20 real-world LDL data sets compared with results produced by 11 state-of-the-art algorithms show that, the proposed LCR-LDL algorithm can not only effectively improve the predictive performances for LDL tasks, but also exhibit higher robustness and a lightweight computational overhead. This study suggests new trends for considering the computational cost and robustness issues in the LDL community.

中文翻译:

标签分布学习:一种本地协作机制

摘要 标签分布学习(LDL)是一种用于处理标签歧义的广义机器学习框架,因为它可以探索每个样本描述中不同标签的相对重要性水平。虽然已经提出了几种算法来解决 LDL 问题,但它们通常在一定程度上破坏了特征空间和标签空间之间几何结构的一致性,这在学习任务中经常发挥重要作用。同时,大多数现有的低密度脂蛋白算法只考虑了预测性能,而忽略了计算成本和对噪声的鲁棒性。为了弥补上述缺陷,我们提出了一种新算法,即基于局部协作表示的标签分布学习,简称 LCR-LDL。在 LCR-LDL 中,将未标记样本作为未标记样本邻域构建的局部字典的协同表示,利用表示系数的判别信息重构未标记样本的标签分布。在 20 个真实世界 LDL 数据集上的实验结果与 11 个最先进算法的结果相比表明,所提出的 LCR-LDL 算法不仅可以有效提高对 LDL 任务的预测性能,而且表现出更高的鲁棒性和轻量级的计算开销。这项研究提出了考虑 LDL 社区中计算成本和稳健性问题的新趋势。利用表征系数的判别信息重构未标记样本的标签分布。在 20 个真实世界 LDL 数据集上的实验结果与 11 个最先进算法产生的结果相比表明,所提出的 LCR-LDL 算法不仅可以有效提高对 LDL 任务的预测性能,而且表现出更高的鲁棒性和轻量级的计算开销。这项研究提出了考虑 LDL 社区中计算成本和稳健性问题的新趋势。利用表征系数的判别信息重构未标记样本的标签分布。在 20 个真实世界 LDL 数据集上的实验结果与 11 个最先进算法的结果相比表明,所提出的 LCR-LDL 算法不仅可以有效提高对 LDL 任务的预测性能,而且表现出更高的鲁棒性和轻量级的计算开销。这项研究提出了考虑 LDL 社区中计算成本和稳健性问题的新趋势。所提出的 LCR-LDL 算法不仅可以有效提高对 LDL 任务的预测性能,而且还表现出更高的鲁棒性和轻量级的计算开销。这项研究提出了考虑 LDL 社区中计算成本和稳健性问题的新趋势。所提出的 LCR-LDL 算法不仅可以有效提高对 LDL 任务的预测性能,而且还表现出更高的鲁棒性和轻量级的计算开销。这项研究提出了考虑 LDL 社区中计算成本和稳健性问题的新趋势。
更新日期:2020-06-01
down
wechat
bug