当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-performance electrochemical sensor based on molecularly imprinted polypyrrole-graphene modified glassy carbon electrode
Thin Solid Films ( IF 2.0 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.tsf.2020.137875
S.M. Oliveira , J.M. Luzardo , L.A. Silva , D.C. Aguiar , C.A. Senna , R. Verdan , A. Kuznetsov , T.L. Vasconcelos , B.S. Archanjo , C.A. Achete , Eliane D'Elia , J.R. Araujo

Abstract Molecularly imprinted polymers are pushing the limits of sensing capabilities in electrochemical sensors. As a result, these sensors are driving the improvement of chemical species detection with applications in pharmaceutical, chemical and food industries as well as showing potential for bioanalytes sensing for applications in medical diagnostics. In particular, molecularly imprinted polymer-graphene sensors have great potential to increase the selectivity, sensitivity and detectability of electrochemical sensors for organic molecules determination, especially in the presence of interferers. In this work, we tested three different coatings on glassy carbon electrode for the purpose of ascorbic acid quantification: graphene, molecular imprinted polypyrrole-graphene and non-imprinted polypyrrole-graphene. Among the prepared electrodes, non-imprinted and molecularly imprinted polypyrrole on graphene, exhibited the highest sensitivity to ascorbic acid (6.14 and 5.87 μA/mmol L−1, respectively), although their detection limit (0.56 and 0.10 mmol L−1, respectively) was poore than the uncoated graphene one (0.02 mmol L−1). Besides that, graphene modified glassy carbon electrode showed better response for repetitive uses. However, in the case of a unique measurement to detect the presence of ascorbic acid in a solution containing interferers, as uric acid and dopamine, molecular imprinted polypyrrole-graphene electrode exhibits better response and selectivity in addition to, an electrocatalytic effect.

中文翻译:

基于分子印迹聚吡咯-石墨烯修饰玻碳电极的高性能电化学传感器

摘要 分子印迹聚合物正在推动电化学传感器传感能力的极限。因此,这些传感器正在推动化学物质检测的改进,应用于制药、化学和食品行业,并显示出生物分析物传感在医疗诊断中的应用潜力。特别是,分子印迹聚合物-石墨烯传感器在提高电化学传感器用于有机分子测定的选择性、灵敏度和可检测性方面具有巨大潜力,尤其是在存在干扰物的情况下。在这项工作中,为了抗坏血酸的定量,我们在玻碳电极上测试了三种不同的涂层:石墨烯、分子印迹聚吡咯-石墨烯和非印迹聚吡咯-石墨烯。在制备的电极中,石墨烯上未印迹和分子印迹的聚吡咯对抗坏血酸的敏感性最高(分别为 6.14 和 5.87 μA/mmol L-1),尽管它们的检测限(分别为 0.56 和 0.10 mmol L-1)比未涂覆的石墨烯一(0.02 mmol L-1)。除此之外,石墨烯修饰的玻碳电极对重复使用表现出更好的响应。然而,在检测含有干扰物(如尿酸和多巴胺)的溶液中是否存在抗坏血酸的独特测量方法中,分子印迹聚吡咯-石墨烯电极除了具有电催化作用外,还表现出更好的响应和选择性。尽管它们的检测限(分别为 0.56 和 0.10 mmol L-1)比未涂覆的石墨烯(0.02 mmol L-1)差。除此之外,石墨烯修饰的玻碳电极对重复使用表现出更好的响应。然而,在检测含有干扰物(如尿酸和多巴胺)的溶液中是否存在抗坏血酸的独特测量方法中,分子印迹聚吡咯-石墨烯电极除了具有电催化作用外还表现出更好的响应和选择性。尽管它们的检测限(分别为 0.56 和 0.10 mmol L-1)比未涂覆的石墨烯(0.02 mmol L-1)差。除此之外,石墨烯修饰的玻碳电极对重复使用表现出更好的响应。然而,在检测含有干扰物(如尿酸和多巴胺)的溶液中是否存在抗坏血酸的独特测量方法中,分子印迹聚吡咯-石墨烯电极除了具有电催化作用外,还表现出更好的响应和选择性。
更新日期:2020-04-01
down
wechat
bug