当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
On the value of relative flow data
Transportation Research Part C: Emerging Technologies ( IF 5.775 ) Pub Date : 2019-05-28 , DOI: 10.1016/j.trc.2019.05.001
Paul B.C. van Erp; Victor L. Knoop; Serge P. Hoogendoorn

Traffic flow can be described using three dimensions, i.e., space x, time t and cumulative flow N. This study considers estimating the cumulative flow over space and time, i.e., N(x,t), using relative flow data collected by stationary and moving observers. Stationary observers, e.g., loop-detectors, can observe flow at fixed position over time. Furthermore, automated or other equipped and connected vehicles can serve as moving observers that observe flow relative to their position over time. To present the value of relative flow data, in this paper, we take the perspective of a model-based estimation approach. In this approach, the data is used in two processes: (1) information assimilation of real-time data and models and (2) learning of the models used in information assimilation based on historical data. This paper focuses on traffic state estimation on links. However, we explain that, in absence of stationary observer that are positioned at the link boundaries, it is valuable to consider the information propagation over nodes. Throughout this study a LWR-model with a triangular fundamental diagram (FD) is used to develop the principles that can be used for the two processes. These principles are tested in a simulation (VISSIM) study. This study shows that we can find the traffic flow model parameters and can partially estimate the link boundary conditions based on relative flow data collected by moving observers alone. It also shows that the traffic flow behavior differs partially from the LWR-model with triangular FD, and therefore, we recommend the option to learn and use other traffic flow models in future research. Overall, relative flow data is considered valuable to obtain model learning datasets and to estimate the traffic state.
更新日期:2020-02-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug