当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery.
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2020-02-20 , DOI: 10.1021/acs.accounts.9b00529
Juno C Siu 1 , Niankai Fu 1 , Song Lin 1
Affiliation  

Electrochemistry has been used as a tool to drive chemical reactions for over two centuries. With the help of an electrode and a power source, chemists are bestowed with an imaginary reagent whose potential can be precisely dialed in. The theoretically infinite redox range renders electrochemistry capable of oxidizing or reducing some of the most tenacious compounds (e.g., F- to F2 and Li+ to Li0). Meanwhile, a granular level of control over the electrode potential allows for the chemoselective differentiation of functional groups with minute differences in potential. These features make electrochemistry an attractive technique for the discovery of new modes of reactivity and transformations that are not readily accessible with chemical reagents alone. Furthermore, the use of an electrical current in place of chemical redox agents improves the cost-efficiency of chemical processes and reduces byproduct generation. Therefore, electrochemistry represents an attractive approach to meet the prevailing trends in organic synthesis and has seen increasingly broad use in the synthetic community over the past several years.While electrochemical oxidation or reduction can provide access to reactive intermediates, redox-active molecular catalysts (i.e., electrocatalysts) can also enable the generation of these intermediates at reduced potentials with improved chemoselectivity. Moreover, electrocatalysts can impart control over the chemo-, regio-, and stereoselectivities of the chemical processes that take place after electron transfer at electrode surfaces. Thus, electrocatalysis has the potential to significantly broaden the scope of organic electrochemistry and enable a wide range of new transformations. Our initial foray into electrocatalytic synthesis led to the development of two generations of alkene diazidation reactions, using transition-metal and organic catalysis, respectively. In these reactions, the electrocatalysts play two critical roles; they promote the single-electron oxidation of N3- at a reduced potential and complex with the resultant transient N3• to form persistent reactive intermediates. The catalysts facilitate the sequential addition of 2 equiv of azide across the alkene substrates, leading to a diverse array of synthetically useful vicinally diaminated products.We further applied this electrocatalytic radical mechanism to the heterodifunctionalization of alkenes. Anodically coupled electrolysis enables the simultaneous anodic generation of two distinct radical intermediates, and the appropriate choice of catalyst allowed the subsequent alkene addition to occur in a chemo- and regioselective fashion. Using this strategy, a variety of difunctionalization reactions, including halotrifluoromethylation, haloalkylation, and azidophosphinoylation, were successfully developed. Importantly, we also demonstrated enantioselective electrocatalysis in the context of Cu-promoted cyanofunctionalization reactions by employing a chiral bisoxazoline ligand. Finally, by introducing a second electrocatalyst that mediates oxidatively induced hydrogen atom transfer, we expanded scope of electrocatalysis to hydrofunctionalization reactions, achieving hydrocyanation of conjugated alkenes in high enantioselectivity. These developments showcase the generality of our electrocatalytic strategy in the context of alkene functionalization reactions. We anticipate that electrocatalysis will play an increasingly important role in the ongoing renaissance of synthetic organic electrochemistry.

中文翻译:


催化电合成:反应发现的均相电催化方法。



两个多世纪以来,电化学一直被用作驱动化学反应的工具。在电极和电源的帮助下,化学家获得了一种假想的试剂,其电位可以精确调节。理论上无限的氧化还原范围使电化学能够氧化或还原一些最顽固的化合物(例如,F-到F2 和 Li+ 至 Li0)。同时,对电极电位的精细控制允许对具有微小电位差异的功能组进行化学选择性区分。这些特征使电化学成为一种有吸引力的技术,可用于发现新的反应模式和转化模式,而仅使用化学试剂无法轻松实现这些模式。此外,使用电流代替化学氧化还原剂可以提高化学工艺的成本效率并减少副产物的产生。因此,电化学是满足有机合成流行趋势的一种有吸引力的方法,并且在过去几年中在合成领域得到了越来越广泛的应用。虽然电化学氧化或还原可以提供反应中间体、氧化还原活性分子催化剂(即、电催化剂)还可以在降低的电势下生成这些中间体,并提高化学选择性。此外,电催化剂可以控制电极表面电子转移后发生的化学过程的化学选择性、区域选择性和立体选择性。因此,电催化有可能显着拓宽有机电化学的范围并实现广泛的新转化。 我们对电催化合成的最初尝试导致了两代烯烃二叠氮化反应的发展,分别使用过渡金属和有机催化。在这些反应中,电催化剂起着两个关键作用:它们在降低的电势下促进 N3- 的单电子氧化,并与所得瞬态 N3• 络合,形成持久的反应中间体。该催化剂促进了2当量叠氮化物在烯烃底物上的顺序加成,从而产生了多种合成上有用的邻位二胺化产物。我们进一步将这种电催化自由基机制应用于烯烃的异双官能化。阳极耦合电解能够同时阳极生成两种不同的自由基中间体,并且催化剂的适当选择允许随后的烯烃加成以化学和区域选择性的方式发生。利用该策略,成功开发了多种双官能化反应,包括卤代三氟甲基化、卤代烷基化和叠氮基膦酰化。重要的是,我们还通过使用手性双恶唑啉配体在铜促进的氰基官能化反应中证明了对映选择性电催化。最后,通过引入介导氧化诱导的氢原子转移的第二种电催化剂,我们将电催化的范围扩展到氢官能化反应,实现了共轭烯烃的高对映选择性氢氰化。这些进展展示了我们在烯烃官能化反应背景下电催化策略的普遍性。 我们预计电催化将在合成有机电化学的复兴中发挥越来越重要的作用。
更新日期:2020-02-20
down
wechat
bug