当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Amorphous bands induced by low temperature tension in a non-equiatomic CrMnFeCoNi alloy
Acta Materialia ( IF 9.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.actamat.2020.02.024
Kaisheng Ming , Wenjun Lu , Zhiming Li , Xiaofang Bi , Jian Wang

Abstract Single-phase face-centered cubic multi-principal-element alloys (fcc MPEAs) comprising transition metal elements Cr, Mn, Fe, Co or Ni generally show strong temperature dependence of stacking fault energy (SFE) of {111} plane, the lower temperature the lower SFE. Through uniaxial tension of a non-equiatomic Cr26Mn20Fe20Co20Ni14 alloy at low temperature, we observed nanoscale microstructures including stacking faults bands, nano-twins, hexagonal-close packed (hcp) phase bands and amorphous bands. The formation and interactions of stacking faults, twins and amorphous bands are characterized at different strain levels, and thermal stability of these nanostructures are investigated by subsequent tempering. We highlight the formation of extensive nanoscale amorphous bands and their much higher thermal stability above 650 °C than nano-twins and hcp bands. Amorphous bands ensure the enhanced strength and good ductility of high temperature tempered Cr26Mn20Fe20Co20Ni14 alloy. Amorphous bands can plastically co-deform with matrix. The interfaces between amorphous band and fcc matrix provide not only strong barriers for dislocation motion, strengthening materials, but also natural sinks of dislocations, disrupting stress concentrations and delaying decohesion and fracture initiation. Our results demonstrate that engineering amorphous bands could be an efficient strategy in remaining enhanced mechanical properties of fcc MPEAs at high temperature.

中文翻译:

非等原子 CrMnFeCoNi 合金中低温张力诱导的非晶带

摘要 包含过渡金属元素 Cr、Mn、Fe、Co 或 Ni 的单相面心立方多主元素合金 (fcc MPEAs) 通常表现出对 {111} 面的层错能 (SFE) 的强烈温度依赖性,温度越低,SFE 越低。通过在低温下对非等原子 Cr26Mn20Fe20Co20Ni14 合金进行单轴拉伸,我们观察到纳米级微观结构,包括堆垛层错带、纳米孪晶、六方密堆积 (hcp) 相带和非晶带。堆垛层错、孪晶和非晶带的形成和相互作用在不同应变水平下进行表征,并通过随后的回火研究这些纳米结构的热稳定性。我们强调了广泛的纳米级非晶带的形成以及它们在 650°C 以上的热稳定性比纳米孪晶和 hcp 带高得多。非晶带保证了高温回火Cr26Mn20Fe20Co20Ni14合金的强度增强和良好的延展性。非晶带可以与基体发生塑性变形。非晶带和 fcc 基体之间的界面不仅为位错运动提供了强大的屏障,增强了材料,而且还提供了位错的自然汇,破坏了应力集中,延迟了脱聚和断裂的开始。我们的结果表明,工程非晶带可能是保持 fcc MPEA 在高温下增强的机械性能的有效策略。非晶带保证了高温回火Cr26Mn20Fe20Co20Ni14合金的强度增强和良好的延展性。非晶带可以与基体发生塑性变形。非晶带和 fcc 基体之间的界面不仅为位错运动提供了强大的屏障,增强了材料,而且还提供了位错的自然汇,破坏了应力集中,延迟了脱聚和断裂的开始。我们的结果表明,工程非晶带可能是保持 fcc MPEA 在高温下增强的机械性能的有效策略。非晶带保证了高温回火Cr26Mn20Fe20Co20Ni14合金的强度增强和良好的延展性。非晶带可以与基体发生塑性变形。非晶带和 fcc 基体之间的界面不仅为位错运动提供了强大的屏障,增强了材料,而且还提供了位错的自然汇,破坏了应力集中,延迟了脱聚和断裂的开始。我们的结果表明,工程非晶带可能是保持 fcc MPEA 在高温下增强的机械性能的有效策略。破坏应力集中并延迟脱聚和断裂开始。我们的结果表明,工程非晶带可能是保持 fcc MPEA 在高温下增强的机械性能的有效策略。破坏应力集中并延迟脱聚和断裂开始。我们的结果表明,工程非晶带可能是保持 fcc MPEA 在高温下增强的机械性能的有效策略。
更新日期:2020-04-01
down
wechat
bug