当前位置: X-MOL 学术Phys. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fundamentals and perspectivesof ultrafast photoferroic recording
Physics Reports ( IF 23.9 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.physrep.2020.01.004
A.V. Kimel , A.M. Kalashnikova , A. Pogrebna , A.K. Zvezdin

Abstract The ability to switch ferroics (ferro-, ferri-, antiferromagnets, ferroelectrics, multiferroics) between two stable bit states is one of the keystones of modern data storage technology. Due to many new ideas, originating from fundamental research during the last 50 years, this technology has developed in a breath-taking fashion. Finding a conceptually new way to control ferroic state of a medium with the lowest possible production of heat and at the fastest possible timescale is a new challenge in fundamental condensed matter research. Controlling ferroic state of media by light is a promising approach to this problem. Photomagnetism and photoferroelectricity have long been intriguing and the development of femtosecond laser sources made this approach even more appealing. Laser pulse is the shortest stimulus in contemporary experimental physics of condensed matter. While commercial lasers are able to produce pulses with duration of the order of tens of femtosecond, advanced laser sources can generate intense pulses of light even at the sub-femtosecond timescale. Seeking understanding a response of magnetically-ordered media to ultrashort excitation led to foundation of new research field of ultrafast magnetism, discoveries of all-optical magnetic switching in various metallic and dielectric materials. Despite obvious analogies between magnetically-ordered and ferroelectric materials, the issue of the ultrafast switching of the order parameter in the latter class of ferroics has been given very little attention. This raises an obvious question about the possibility of optical switching of the spontaneous polarization in ferroelectrics and the prospects of information recording in ferroelectrics by means of light. Here we briefly review the main findings of earlier studies of optical control of spontaneous magnetization and polarization, highlight recent developments of ultrafast magnetism and magnetic recording with femtosecond laser pulses, and discuss a new field of ultrafast ferroelectricity. Analyzing the literature, we derive the most promising strategies for optical recording in ferroic media and speculate about applicability of the strategy proven to be efficient in magnetically-ordered media, to ferroelectrics and multiferroics.

中文翻译:

超快光铁记录的基础与展望

摘要 在两个稳定位状态之间切换铁质(铁、亚铁、反铁磁体、铁电体、多铁性)的能力是现代数据存储技术的基石之一。由于在过去 50 年中源自基础研究的许多新想法,这项技术以令人叹为观止的方式发展。寻找一种概念上的新方法来以尽可能低的热量产生和尽可能快的时间来控制介质的铁质状态,这是基础凝聚态研究中的一个新挑战。通过光控制介质的铁质状态是解决这个问题的一种有前途的方法。长期以来,光磁和光铁电一直令人着迷,飞秒激光源的发展使这种方法更具吸引力。激光脉冲是当代凝聚态物理实验中最短的刺激。虽然商用激光器能够产生持续时间为数十飞秒的脉冲,但先进的激光源即使在亚飞秒时间尺度上也能产生强烈的光脉冲。寻求了解磁有序介质对超短激发的响应为超快磁学的新研究领域奠定了基础,发现了各种金属和介电材料中的全光磁开关。尽管磁性有序材料和铁电材料之间存在明显的类比,但后一类铁电材料中有序参数的超快切换问题很少受到关注。这提出了一个明显的问题,即铁电体中自发极化的光学切换的可能性以及通过光在铁电体中记录信息的前景。在这里,我们简要回顾了早期自发磁化和极化的光学控制研究的主要发现,重点介绍了使用飞秒激光脉冲的超快磁学和磁记录的最新进展,并讨论了一个新的超快铁电领域。通过分析文献,我们推导出了在铁质介质中进行光学记录的最有希望的策略,并推测该策略在磁性有序介质、铁电体和多铁性介质中被证明有效的适用性。在这里,我们简要回顾了早期自发磁化和极化的光学控制研究的主要发现,重点介绍了使用飞秒激光脉冲的超快磁学和磁记录的最新进展,并讨论了一个新的超快铁电领域。通过分析文献,我们推导出了在铁质介质中进行光学记录的最有希望的策略,并推测该策略在磁性有序介质、铁电体和多铁性介质中被证明有效的适用性。在这里,我们简要回顾了早期自发磁化和极化的光学控制研究的主要发现,重点介绍了使用飞秒激光脉冲的超快磁学和磁记录的最新进展,并讨论了一个新的超快铁电领域。通过分析文献,我们推导出了在铁质介质中进行光学记录的最有希望的策略,并推测该策略在磁性有序介质、铁电体和多铁性介质中被证明有效的适用性。
更新日期:2020-04-01
down
wechat
bug