当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen in zirconium: Atomistic simulations of diffusion and interaction with defects using a new embedded atom method potential
Journal of Nuclear Materials ( IF 3.1 ) Pub Date : 2020-02-14 , DOI: 10.1016/j.jnucmat.2020.152055
E. Wimmer , M. Christensen , W. Wolf , W.H. Howland , B. Kammenzind , R.W. Smith

A new interatomic embedded atom method (EAM) potential, called BMD19, has been developed for simulations of hexagonal zirconium with dissolved hydrogen. The parameters are fitted to data from density functional calculations and calibrated using the experimental room-temperature density of zirconium. The new potential overcomes the unphysical negative thermal expansion coefficient between 0 and 200 K obtained with the frequently used Mendelev-Ackland potential (MA#3). It reproduces the geometry around self-interstitial atoms (SIA’s) obtained with DFT while the MA#3 and the COMB3 potentials yield structures with the SIA between basal planes. The energies of forming vacancies and self-interstitials as well as the elastic coefficients are of similar quality for all potentials investigated in the present work. Compared with DFT results, the new potential describes the interactions of H with Zr better overall than any previously published interatomic potentials. This includes the binding energy of interstitial H and its dependence on lattice strain for tetrahedral and octahedral sites, the trapping energy in vacancies, surface segregation energy, and the energy of diffusion barriers. The present work illustrates the usefulness of the BMD19 potential by showing the dependence of diffusion coefficients on lattice strain, the accumulation of H in vacancy c-loops and by correctly describing the Soret effect, i.e. the diffusion of H from hotter to colder regions of the material. Simulations of the effect of grain boundaries and internal surfaces (e.g. nano-voids) and diffusion on surfaces provide further demonstrations of the usefulness of this new potential.



中文翻译:

锆中的氢:使用新的嵌入式原子方法势的原子扩散和缺陷相互作用的原子模拟

已经开发出一种新的原子间嵌入原子方法(EAM)势能,称为BMD19,用于模拟具有溶解氢的六方锆。将参数拟合到来自密度泛函计算的数据,并使用实验室温下的锆密度进行校准。新的电势克服了通过经常使用的Mendelev-Ackland电势(MA#3)在0至200 K之间的非物理负热膨胀系数。它再现了用DFT获得的自填隙原子(SIA)周围的几何形状,而MA#3和COMB3势产生了基面之间具有SIA的结构。对于本工作中研究的所有潜力,形成空位和自填隙的能量以及弹性系数具有相似的质量。与DFT结果相比,新的电势比以前公布的任何原子间电势更好地描述了H与Zr的相互作用。这包括间隙H的结合能及其对四面体和八面体位点晶格应变的依赖性,空位中的俘获能,表面偏析能以及扩散势垒能。本工作通过显示扩散系数对晶格应变的依赖性,空位c环中H的积累以及正确描述Soret效应来说明BMD19电位的有用性,表面偏析能,以及扩散势垒的能。本工作通过显示扩散系数对晶格应变的依赖性,空位c环中H的积累以及正确描述Soret效应来说明BMD19电位的有用性,表面偏析能,以及扩散势垒的能。本工作通过显示扩散系数对晶格应变的依赖性,空位c环中H的积累以及正确描述Soret效应来说明BMD19电位的有用性,。H从材料的较热区域向较冷区域的扩散。晶界和内表面(例如纳米空隙)以及表面扩散的影响的模拟提供了这种新潜力的有用性的进一步证明。

更新日期:2020-02-20
down
wechat
bug