当前位置: X-MOL 学术Biomaterials › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mussel-inspired "built-up" surface chemistry for combining nitric oxide catalytic and vascular cell selective properties.
Biomaterials ( IF 12.8 ) Pub Date : 2020-02-19 , DOI: 10.1016/j.biomaterials.2020.119904
Xiangyang Li 1 , Jingxia Liu 2 , Tong Yang 1 , Hua Qiu 1 , Lei Lu 3 , Qiufen Tu 1 , Kaiqing Xiong 1 , Nan Huang 1 , Zhilu Yang 1
Affiliation  

Specific selectivity of vascular cells and antithrombogenicity are crucial factors for the long-term success of vascular implants. In this work, a novel concept of mussel-inspired "built-up" surface chemistry realized by sequential stacking of a copper-dopamine network basement, followed by a polydopamine layer is introduced to facilitate the combination of nitric oxide (NO) catalysis and vascular cell selectivity. The resultant "built-up" film allowed easy manipulation of the content of copper ions and the density of catechol/quinone groups, facilitating the multifunctional surface engineering of vascular devices. For example, the chelated copper ions in the copper-dopamine network endow a functionalized vascular stent with a durable release of NO via catalytic decomposition of endogenous S-nitrosothiol. Meanwhile, the catechol/quinone groups on the film surface allow the facile, secondary grafting of the REDV peptide to develop a selectivity for vascular cells, as a supplement to the functions of NO. As a result, the functionalized vascular stent perfectly combines the functions of NO and REDV, showing excellent antithrombotic properties and competitive selectivity toward the endothelial cells over the smooth muscle cells, hence impressively promotes re-endothelialization and improves anti-restenosis in vivo. Therefore, the first mussel-inspired "built-up" surface chemistry can be a promising candidate for the engineering of multifunctional surfaces.

中文翻译:

贻贝启发的“组合式”表面化学,结合了一氧化氮催化和血管细胞的选择性特性。

血管细胞的特异性选择性和抗血栓形成性是血管植入物长期成功的关键因素。在这项工作中,引入了贻贝启发的“堆积”表面化学的新概念,该概念是通过顺序堆叠铜-多巴胺网络基底,然后是聚多巴胺层来实现的,以促进一氧化氮(NO)催化和血管的结合细胞选择性。所得的“堆积”膜允许容易地控制铜离子的含量和邻苯二酚/醌基的密度,从而有利于血管装置的多功能表面工程。例如,铜-多巴胺网络中的螯合铜离子使功能化的血管支架通过内源性S-亚硝基硫醇的催化分解而持久释放NO。与此同时,膜表面上的邻苯二酚/醌基团允许REDV肽轻松进行二次接枝,从而对血管细胞产生选择性,作为NO功能的补充。结果,功能化的血管支架完美结合了NO和REDV的功能,显示出优异的抗血栓性和对内皮细胞的竞争性选择性,超过了平滑肌细胞,从而显着促进了再内皮化并改善了体内的抗再狭窄。因此,首批贻贝启发的“堆积”表面化学可以成为多功能表面工程的有前途的候选者。功能化的血管支架完美结合了NO和REDV的功能,显示出优异的抗血栓形成性能和对内皮细胞的竞争性选择性,超过了平滑肌细胞,从而显着促进了重新内皮化并改善了体内的抗再狭窄。因此,首批贻贝启发的“堆积”表面化学可以成为多功能表面工程的有前途的候选者。功能化的血管支架完美结合了NO和REDV的功能,显示出优异的抗血栓形成性能和对内皮细胞的竞争性选择性,超过了平滑肌细胞,从而显着促进了重新内皮化并改善了体内的抗再狭窄。因此,首批贻贝启发的“堆积”表面化学可以成为多功能表面工程的有前途的候选者。
更新日期:2020-02-20
down
wechat
bug