当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen‐Deficient Homo‐Interface toward Exciting Boost of Pseudocapacitance
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-02-19 , DOI: 10.1002/adfm.201909546
Bo Liu 1, 2 , Shuo Sun 1, 2 , Ruyue Jia 1, 2 , Hongshen Zhang 1, 2 , Xiaohui Zhu 1, 2 , Chenguang Zhang 1, 2 , Jing Xu 1, 2 , Teng Zhai 1, 2 , Hui Xia 1, 2, 3
Affiliation  

Pseudocapacitors hold great promise as charge storage systems that combine battery‐level energy density and capacitor‐level power density. The utilization of pseudocapacitive material, however, is usually restricted to the surface due to poor electrode kinetics, leading to less accessible charge storage sites and limited capacitance. Here, tin oxide is successfully endowed with outstanding pseudocapacitance and fast electrode kinetics in a negative potential window by engineering oxygen‐deficient homo‐interfaces. The as‐prepared SnO2−x@SnO2−x electrode yields a specific capacitance of 376.6 F g−1 at the current density of 2.5 A g−1 and retains 327 F g−1 at a high current density of 80 A g−1. The theoretical calculation reveals that the oxygen defects are more favorable at homo‐interfaces than at the surface due to the lower defect formation energy. Meanwhile, as compared with the surface, the homo‐interface possesses more stable Li+ storage sites that are readily accessed by Li+ due to the occurrence of oxygen vacancies, enabling outstanding pseudocapacitance as well as high rate capability. This oxygen‐deficient homo‐interface design opens up new opportunities to develop high‐energy and power pseudocapacitors.

中文翻译:

氧气不足的人机界面促进兴奋性假电容

伪电容器作为结合了电池级能量密度和电容器级功率密度的电荷存储系统,具有广阔的前景。然而,由于不良的电极动力学,通常将伪电容材料的使用限制在表面上,从而导致较少的电荷存储位点和有限的电容。在这里,通过工程缺氧的均质界面,氧化锡在负电势窗口中被成功赋予了出色的伪电容和快速的电极动力学。所制备的SnO 2 - x @SnO 2- x电极在2.5 A g -1的电流密度下会产生376.6 F g -1的比电容,并保留327 F g -1在80 A g -1的高电流密度下。理论计算表明,由于较低的缺陷形成能,均质界面处的氧缺陷比表面处的氧缺陷更有利。同时,与表面相比,同质界面拥有更稳定的Li +储存位,由于氧空位的出现,Li +易于访问,从而实现了出色的伪电容和高倍率能力。这种缺氧的同质界面设计为开发高能量和功率的伪电容器开辟了新的机会。
更新日期:2020-04-06
down
wechat
bug