当前位置: X-MOL 学术Dev. Cogn. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neural oscillatory dynamics serving abstract reasoning reveal robust sex differences in typically-developing children and adolescents.
Developmental Cognitive Neuroscience ( IF 4.7 ) Pub Date : 2020-02-19 , DOI: 10.1016/j.dcn.2020.100770
Brittany K Taylor 1 , Christine M Embury 2 , Elizabeth Heinrichs-Graham 1 , Michaela R Frenzel 1 , Jacob A Eastman 1 , Alex I Wiesman 1 , Yu-Ping Wang 3 , Vince D Calhoun 4 , Julia M Stephen 5 , Tony W Wilson 1
Affiliation  

Fluid intelligence, the ability to problem-solve in novel situations, is linked to higher-order cognitive abilities, and to academic achievement in youth. Previous research has demonstrated that fluid intelligence and the underlying neural circuitry continues to develop throughout adolescence. Neuroimaging studies have predominantly focused on identifying the spatial distribution of brain regions associated with fluid intelligence, with only a few studies examining the temporally-sensitive cortical oscillatory dynamics underlying reasoning abilities. The present study collected magnetoencephalography (MEG) during an abstract reasoning task to examine these spatiotemporal dynamics in a sample of 10-to-16 year-old youth. We found increased cortical activity across a distributed frontoparietal network. Specifically, our key results showed: (1) age was associated with increased theta activity in occipital and cerebellar regions, (2) robust sex differences were distributed across frontoparietal regions, and (3) that specific frontoparietal regions differentially predicted abstract reasoning performance among males versus females despite similar mean performance. Among males, increased theta activity mediated the relationship between age and faster reaction times; conversely, among females, decreased theta mediated the relationship between age and improved accuracy. These findings may suggest that males and females engage in distinct neurocognitive strategies across development to achieve similar behavioral outcomes during fluid reasoning tasks.



中文翻译:

服务于抽象推理的神经振荡动力学揭示了正常发育的儿童和青少年的强烈性别差异。

流体智力,即在新情况下解决问题的能力,与高阶认知能力和青年学业成就有关。先前的研究表明,流体智力和潜在的神经回路在整个青春期继续发展。神经影像学研究主要集中在识别与流体智力相关的大脑区域的空间分布,只有少数研究检查了推理能力背后的时间敏感皮层振荡动力学。本研究在一项抽象推理任务中收集了脑磁图 (MEG),以检查 10 至 16 岁青年样本中的这些时空动态。我们发现分布的额顶叶网络中皮质活动增加。具体来说,我们的主要结果显示:(1) 年龄与枕部和小脑区域的 theta 活动增加有关,(2) 强烈的性别差异分布在额顶区域,(3) 尽管平均表现相似,但特定的额顶区域对男性和女性的抽象推理表现有不同的预测。在男性中,增加的 theta 活动介导了年龄和更快的反应时间之间的关系;相反,在女性中,减少的 theta 介导了年龄和提高准确性之间的关系。这些发现可能表明,男性和女性在发育过程中采用不同的神经认知策略,以在流畅的推理任务中实现相似的行为结果。(2) 巨大的性别差异分布在额顶区域,(3) 尽管平均表现相似,但特定的额顶区域对男性和女性的抽象推理表现有不同的预测。在男性中,增加的 theta 活动介导了年龄和更快的反应时间之间的关系;相反,在女性中,减少的 theta 介导了年龄和提高准确性之间的关系。这些发现可能表明,男性和女性在发育过程中采用不同的神经认知策略,以在流畅的推理任务中实现相似的行为结果。(2) 巨大的性别差异分布在额顶区域,(3) 尽管平均表现相似,但特定的额顶区域对男性和女性的抽象推理表现有不同的预测。在男性中,增加的 theta 活动介导了年龄和更快的反应时间之间的关系;相反,在女性中,减少的 theta 介导了年龄和提高准确性之间的关系。这些发现可能表明,男性和女性在发育过程中采用不同的神经认知策略,以在流畅的推理任务中实现相似的行为结果。增加的 theta 活动介导了年龄和更快的反应时间之间的关系;相反,在女性中,减少的 theta 介导了年龄和提高准确性之间的关系。这些发现可能表明,男性和女性在发育过程中采用不同的神经认知策略,以在流畅的推理任务中实现相似的行为结果。增加的 theta 活动介导了年龄和更快的反应时间之间的关系;相反,在女性中,减少的 theta 介导了年龄和提高准确性之间的关系。这些发现可能表明,男性和女性在发育过程中采用不同的神经认知策略,以在流畅的推理任务中实现相似的行为结果。

更新日期:2020-02-19
down
wechat
bug