当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
On Tuza's conjecture for triangulations and graphs with small treewidth
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-18 , DOI: arxiv-2002.07925
Fábio Botler; Cristina G. Fernandes; Juan Gutiérrez

Tuza (1981) conjectured that the size $\tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $\nu(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most $6$; we show that $\tau(G)\leq \frac{3}{2}\,\nu(G)$ for every planar triangulation $G$ different from $K_4$; and that $\tau(G)\leq\frac{9}{5}\,\nu(G) + \frac{1}{5}$ if $G$ is a maximal graph with treewidth 3.
更新日期:2020-02-20

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug