当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Grand canonical inverse design of multicomponent colloidal crystals
Soft Matter ( IF 2.9 ) Pub Date : 2020/02/19 , DOI: 10.1039/c9sm02426c
Nathan A. Mahynski 1, 2, 3, 4 , Runfang Mao 4, 5, 6, 7 , Evan Pretti 4, 5, 6, 7 , Vincent K. Shen 1, 2, 3, 4 , Jeetain Mittal 4, 5, 6, 7
Affiliation  

Inverse design methods are powerful computational approaches for creating colloidal systems which self-assemble into a target morphology by reverse engineering the Hamiltonian of the system. Despite this, these optimization procedures tend to yield Hamiltonians which are too complex to be experimentally realized. An alternative route to complex structures involves the use of several different components, however, conventional inverse design methods do not explicitly account for the possibility of phase separation into compositionally distinct structures. Here, we present an inverse design scheme for multicomponent colloidal systems by combining active learning with a method to directly compute their ground state phase diagrams. This explicitly accounts for phase separation and can locate stable regions of Hamiltonian parameter space which grid-based surveys are prone to miss. Using this we design low-density, binary structures with Lennard-Jones-like pairwise interactions that are simpler than in the single component case and potentially realizable in an experimental setting. This reinforces the concept that ground states of simple, multicomponent systems might be rich with previously unappreciated diversity, enabling the assembly of non-trivial structures with only few simple components instead of a single complex one.

中文翻译:

多组分胶体晶体的大正则逆设计

逆设计方法是用于创建胶体系统的强大计算方法,该胶体系统通过对系统的哈密顿量进行逆向工程而自动组装为目标形态。尽管如此,这些优化过程往往会产生哈密顿量,而哈密顿量过于复杂而无法通过实验实现。通往复杂结构的替代方法涉及使用几种不同的组件,但是,常规的逆向设计方法并未明确考虑将相分离成成分不同的结构的可能性。在这里,我们通过结合主动学习与直接计算其基态相图的方法,提出了一种多组分胶体系统的逆设计方案。这明确地说明了相分离,并且可以找到基于网格的调查容易遗漏的哈密顿参数空间的稳定区域。使用这种方法,我们设计了具有Lennard-Jones类成对相互作用的低密度二元结构,该结构比单组分情况更简单,并且可能在实验环境中实现。这强化了这样的概念,即简单的多组件系统的基态可能具有以前未曾意识到的多样性,从而可以组装仅包含少量简单组件而不是单个复杂组件的非平凡结构。
更新日期:2020-04-01
down
wechat
bug