当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Progress in Self‐Supported Catalysts for CO2 Electrochemical Reduction
Small Methods ( IF 10.7 ) Pub Date : 2020-02-19 , DOI: 10.1002/smtd.201900826
Hengpan Yang 1 , Xiaodeng Wang 1 , Qi Hu 1 , Xiaoyan Chai 1 , Xiangzhong Ren 1 , Qianling Zhang 1 , Jianhong Liu 1 , Chuanxin He 1
Affiliation  

Electrochemical reduction of CO2 may provide a promising method to mitigate the concentration of CO2 in the atmosphere, and simultaneously convert this greenhouse gas into value‐added fuels or chemicals. However, electrocatalysts for CO2 reduction are mostly powder based; therefore, polymer binders are always employed to make these catalysts useful as working electrodes. As a consequence, plenty of active sites are embedded inside without catalytic performance, causing a relatively low efficiency. On the contrary, self‐supported electrocatalysts do not involve the typical powdering and drop‐coating procedure with the aid of polymer binders or additives, avoiding the weak contact between active materials and current collector. Moreover, the superior self‐supported structure can also provide an accelerated electron transfer, guarantee ample electrolyte access to the active sites, offer large electrochemical surface areas, and increase CO2 adsorption capacity around the active sites, finally leading to the excellent efficiency and long‐term stability in CO2 reduction. In this manuscript, recent advances regarding CO2 reduction by self‐supported electrocatalysts are comprehensively reviewed, including the synthesis methods, chemical compositions, nanostructures, and catalytic efficiencies. Furthermore, the existing challenges and perspectives on the research and development of self‐supported electrocatalysts for CO2 reduction are discussed.

中文翻译:

自支撑式CO2电化学还原催化剂的最新进展

电化学还原CO 2可能是减轻大气中CO 2浓度并将这种温室气体同时转化为增值燃料或化学物质的有前途的方法。但是,CO 2的电催化剂减少主要是基于粉末;因此,总是使用聚合物粘合剂来使这些催化剂用作工作电极。结果,大量的活性位点被嵌入其中而没有催化性能,从而导致相对较低的效率。相反,自负载型电催化剂不涉及借助聚合物粘合剂或添加剂进行的典型粉末化和滴涂过程,从而避免了活性材料与集电器之间的弱接触。此外,卓越的自支撑结构还可以提供加速的电子传输,确保充足的电解质进入活性位点,提供较大的电化学表面积,并增加CO 2。活性部位周围的吸附能力,最终导致出色的效率和CO 2还原的长期稳定性。在本手稿中,对自支撑电催化剂还原CO 2的最新进展进行了全面综述,包括合成方法,化学组成,纳米结构和催化效率。此外,还讨论了用于还原CO 2的自支撑电催化剂的研究和开发面临的挑战和前景。
更新日期:2020-02-19
down
wechat
bug