当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Weighted Additive Spanners
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-15 , DOI: arxiv-2002.07152
Reyan Ahmed; Greg Bodwin; Faryad Darabi Sahneh; Stephen Kobourov; Richard Spence

An $\alpha$-additive spanner of an undirected graph $G=(V, E)$ is a subgraph $H$ such that the distance between any two vertices in $G$ is stretched by no more than an additive factor of $\alpha$. It is previously known that unweighted graphs have 2-, 4-, and 6-additive spanners containing $\widetilde{O}(n^{3/2})$, $\widetilde{O}(n^{7/5})$, and $O(n^{4/3})$ edges, respectively. In this paper, we generalize these results to weighted graphs. We consider $\alpha=2W$, $4W$, $6W$, where $W$ is the maximum edge weight in $G$. We first show that every $n$-node graph has a subsetwise $2W$-spanner on $O(n |S|^{1/2})$ edges where $S \subseteq V$ and $W$ is a constant. We then show that for every set $P$ with $|P| = p$ vertex demand pairs, there are pairwise $2W$- and $4W$-spanners on $O(np^{1/3})$ and $O(np^{2/7})$ edges respectively. We also show that for every set $P$, there is a $6W$-spanner on $O(np^{1/4})$ edges where $W$ is a constant. We then show that every graph has additive $2W$- and $4W$-spanners on $O(n^{3/2})$ and $O(n^{7/5})$ edges respectively. Finally, we show that every graph has an additive $6W$-spanner on $O(n^{4/3})$ edges where $W$ is a constant.
更新日期:2020-02-19

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
西湖大学
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug