当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanomechanics and Raman Spectroscopy of in Situ Native Carbohydrate Storage Granules for Enhancing Starch Quality and Lignocellulosic Biomass Production.
ACS Omega ( IF 3.7 ) Pub Date : 2020-02-06 , DOI: 10.1021/acsomega.9b02849
Rubye H Farahi 1 , Aude L Lereu 2 , Anne M Charrier 3 , Udaya C Kalluri 4 , Brian H Davison 4, 5 , Ali Passian 1, 4, 5, 6
Affiliation  

Alternative energy strategies based on plant biomass-derived bioenergy and biofuels rely on understanding and optimization of plant structure, chemistry, and performance. Starch, a constitutive element of all green plants, is important to food, biofuels, and industrial applications. Models of carbohydrate storage granules are highly heterogeneous in representing morphology and structure, though a deeper understanding of the role of structure in functional behavior is emerging. A better understanding of the in situ nanoscale properties of native granules is needed to help improve the starch quality in food crops as well as optimize lignocellulosic biomass production in perennial nonfood crops. Here, we present a new technique called soft mechanical nano-ablation (sMNA) for accessing the interior of the granules without compromising the inner nanostructure. We then explore the nanomechanics of granules within the ray parenchyma cells of Populus xylem, a desirable woody biofuel feedstock. The employed soft outer layer nanoablation and atomic force microscopy reveal that the inner structure comprises 156 nm blocklets arranged in a semicrystalline organization. The nanomechanical properties of the inner and outer structures of a single starch granule are measured and found to exhibit large variations, changing by a factor of 3 in Young's modulus and a factor of 2 in viscoplastic index. These findings demonstrate how the introduced approach facilitates studies of structure-function relationships among starch granules and more complex secondary cell wall features as they relate to plant performance.

中文翻译:

原位天然碳水化合物储存颗粒的纳米力学和拉曼光谱,可提高淀粉质量和木质纤维素生物质生产。

基于植物生物质衍生的生物能和生物燃料的替代能源策略依赖于对植物结构,化学和性能的理解和优化。淀粉是所有绿色植物的组成元素,对食品,生物燃料和工业应用至关重要。碳水化合物存储颗粒的模型在表示形态和结构方面高度异质,尽管人们对结构在功能行为中的作用有了更深入的了解。需要更好地了解天然颗粒的原位纳米级特性,以帮助改善粮食作物中的淀粉质量以及优化多年生非粮食作物中木质纤维素生物质的生产。这里,我们提出了一种称为软机械纳米消融(sMNA)的新技术,该技术可访问颗粒的内部而不损害内部纳米结构。然后,我们探索胡杨木质部(一种理想的木质生物燃料原料)的射线薄壁组织细胞内的颗粒的纳米力学。使用的软外层纳米烧蚀和原子力显微镜显示内部结构包括以半晶体组织排列的156 nm小块。测量了单个淀粉颗粒的内部和外部结构的纳米力学性能,发现其表现出较大的变化,其杨氏模量的系数为3,粘塑性指数的系数为2。
更新日期:2020-02-18
down
wechat
bug