当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Macrophase-Separated Organic Ionic Plastic Crystals/PAMPS-Based Ionomer Electrolyte: A New Design Perspective for Flexible and Highly Conductive Solid-State Electrolytes.
ACS Omega ( IF 3.7 ) Pub Date : 2020-02-03 , DOI: 10.1021/acsomega.9b03773
Nicolas Goujon 1, 2 , Robert Kerr 1 , Charlotte Gervillié 1 , Yogita V Oza 1 , Luke A O'Dell 1 , Patrick C Howlett 1 , Maria Forsyth 1, 2
Affiliation  

A material design approach was taken for the preparation of an organic ionic plastic crystal (OIPC)-polymer electrolyte material that exhibited both good mechanical and transport properties. Previous attempts to form this type of electrolyte material resulted in the solvation of the OIPC by the ionomer and loss of the plastic crystal component. Here, we prepared, in situ, a macrophase-separated OIPC-polymer electrolyte system by adding lithium bis(fluorosulfonyl)imide (LiFSI) to a (PAMPS-N1222) ionomer. It was found that an optimal compositional window of 40-50 mol % LiFSI exists whereby the electrolyte conductivity suddenly increased 4 orders of magnitude while exhibiting elastic and flexible mechanical properties. The phase behavior and transport properties were studied using differential scanning calorimetry and 7Li and 19F solid-state nuclear magnetic resonance spectroscopy. This is the first example of a fabrication principle that lends itself to a wide range of promising OIPC and ionomeric materials. Subsequent studies are required to characterize and understand the morphology and conductive nature of these systems and their application as electrolyte materials.

中文翻译:

大相分离的有机离子塑料晶体/基于PAMPS的离子聚合物电解质:柔性和高导电性固态电解质的新设计视角。

采取了一种材料设计方法来制备具有良好机械性能和运输性能的有机离子塑料晶体(OIPC)-聚合物电解质材料。先前形成这种电解质材料的尝试导致了OIPC被离聚物溶剂化并损失了塑料晶体成分。在这里,我们通过向(PAMPS-N1222)离聚物中添加双(氟磺酰基)酰亚胺锂(LiFSI),原位制备了大相分离的OIPC-聚合物电解质体系。发现存在40-50mol%的LiFSI的最佳组成窗口,由此电解质电导率突然增加4个数量级,同时表现出弹性和挠性的机械性能。使用差示扫描量热法和7Li和19F固态核磁共振波谱研究了相行为和传输性质。这是制造原理的第一个示例,可使其适用于各种有前途的OIPC和离聚物材料。需要进行后续研究来表征和理解这些系统的形态和导电性质,以及它们作为电解质材料的应用。
更新日期:2020-02-18
down
wechat
bug