当前位置: X-MOL 学术Analyst › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of confined direct analysis in real time mass spectrometry (DART-MS).
Analyst ( IF 4.2 ) Pub Date : 2020/02/17 , DOI: 10.1039/d0an00031k
Edward Sisco 1 , Matthew E Staymates , Thomas P Forbes
Affiliation  

Direct analysis in real time mass spectrometry (DART-MS) is seeing increased use in many fields, including forensic science, environmental monitoring, food safety, and healthcare. With increased use, novel configurations of the system have been created to either aid in detection of traditionally difficult compounds or surfaces, provide a more reproducible analysis, and/or chemically image surfaces. This work focuses on increasing the fundamental understanding of one configuration, where the DART ionization gas is confined in a junction, such as with thermal desorption (TD) DART-MS. Using five representative compounds and a suite of visualization tools, the role of the DART ionization gas, Vapur flow rate, gas back pressure, and exit grid voltage were examined to better understand both the chemical and physical processes occurring inside the confined configuration. The use of nitrogen as a DART ionization gas was found to be more beneficial than helium because of enhanced mixing with the analyte vapors, providing a more reproducible response. Lower Vapur flow rates were also found to be advantageous as they increased the analyte residence time in the junction, thus increasing the probability of its ionization. Operation at even lower Vapur flow rates was achieved by modifying the junction to restrict the DART gas flow. The DART exit grid voltage and gas back pressure had little observed impact on analyte response. These results provide the foundation to better understand and identify best practices for using a confined DART-MS configuration.

中文翻译:

实时质谱(DART-MS)中受限直接分析的优化。

实时质谱(DART-MS)的直接分析在许多领域都得到了越来越多的使用,包括法医学,环境监测,食品安全和医疗保健。随着使用的增加,已经创建了系统的新颖配置,以帮助检测传统上困难的化合物或表面,提供更可重现的分析和/或对表面进行化学成像。这项工作着重于提高对一种配置的基本理解,在该配置中,DART电离气体被限制在结中,例如热解吸(TD)DART-MS。使用五种代表性化合物和一套可视化工具,DART电离气体的作用,Vapur流速,气体背压,检查并分析了出口电网电压,以更好地了解密闭配置内部发生的化学和物理过程。已发现使用氮气作为DART电离气体比氦气更有益,因为它增强了与分析物蒸气的混合,提供了更可重复的响应。还发现较低的Vapur流速是有利的,因为它们会增加分析物在连接处的停留时间,从而增加其电离的可能性。通过修改接头以限制DART气体流量,可以在更低的Vapur流量下运行。DART出口电网电压和气体背压几乎没有观察到对分析物响应的影响。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。已发现使用氮气作为DART电离气体比氦气更有益,因为它增强了与分析物蒸气的混合,提供了更可重复的响应。还发现较低的Vapur流速是有利的,因为它们会增加分析物在连接处的停留时间,从而增加其电离的可能性。通过修改接头以限制DART气体流量,可以在更低的Vapur流量下运行。DART出口电网电压和气体背压几乎没有观察到对分析物响应的影响。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。已发现使用氮气作为DART电离气体比氦气更有益,因为它增强了与分析物蒸气的混合,提供了更可重复的响应。还发现较低的Vapur流速是有利的,因为它们会增加分析物在连接处的停留时间,从而增加其电离的可能性。通过修改接头以限制DART气体流量,可以在更低的Vapur流量下运行。DART出口电网电压和气体背压几乎没有观察到对分析物响应的影响。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。还发现较低的Vapur流速是有利的,因为它们会增加分析物在连接处的停留时间,从而增加其电离的可能性。通过修改接头以限制DART气体流量,可以在更低的Vapur流量下运行。DART出口电网电压和气体背压几乎没有观察到对分析物响应的影响。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。还发现较低的Vapur流速是有利的,因为它们会增加分析物在结中的停留时间,从而增加其电离的可能性。通过修改接头以限制DART气体流量,可以在更低的Vapur流量下运行。DART出口电网电压和气体反压对分析物响应的影响很小。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。DART出口电网电压和气体背压几乎没有观察到对分析物响应的影响。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。DART出口电网电压和气体背压几乎没有观察到对分析物响应的影响。这些结果为更好地理解和确定使用受限DART-MS配置的最佳实践奠定了基础。
更新日期:2020-03-31
down
wechat
bug