当前位置: X-MOL 学术VLDB J. › 论文详情
Efficient maximum clique computation and enumeration over large sparse graphs
The VLDB Journal ( IF 1.973 ) Pub Date : 2020-02-15 , DOI: 10.1007/s00778-020-00602-z
Lijun Chang

Abstract This paper studies the problem of maximum clique computation (MCC) over sparse graphs, as large real-world graphs are usually sparse. In the literature, the problem of MCC over sparse graphs has been studied separately and less extensively than its dense counterpart—MCC over dense graphs—and advanced algorithmic techniques that are developed for MCC over dense graphs have not been utilized in the existing MCC solvers for sparse graphs. In this paper, we design an algorithm \(\mathsf {MC\text {-}BRB}\) for sparse graphs which transforms an instance of MCC over a large sparse graph G to instances of k-clique finding (KCF) over dense subgraphs of G, each of which can be computed by the existing MCC solvers for dense graphs. To further improve the efficiency, we then develop a new branch-reduce-&-bound framework for KCF over dense graphs by proposing light-weight reducing techniques and leveraging the advanced branching and bounding techniques that are used in the existing MCC solvers for dense graphs. In addition, we also design an ego-centric algorithm \(\mathsf {MC\text {-}EGO}\) for heuristically computing a near-maximum clique in near-linear time, and we extend our \(\mathsf {MC\text {-}BRB}\) algorithm to enumerate all maximum cliques. Finally, we parallelize our algorithms to exploit multiple CPU cores. We conduct extensive empirical studies on large real graphs and demonstrate the efficiency and effectiveness of our techniques.
更新日期:2020-02-18

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug