当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Maximum Total Complex Correntropy for Adaptive Filter
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2020-01-23 , DOI: 10.1109/tsp.2020.2969042
Guobing Qian; Shiyuan Wang; Herbert H. C. Iu

Nowadays, complex Correntropy has been widely used for adaptive filtering in the complex domain. Compared with the second order statistics methods, the complex correntropy based algorithms have shown the superiority in the non-Gaussian noise, especially the impulsive noise. However, the current complex correntropy based adaptive filtering algorithms have not taken the input noise into consideration, and the performances will be deteriorated when the input signals are also corrupted by the noise. In this article, we focus on the errors-in-variables (EIV) model and propose an adaptive algorithm based on the maximum total complex correntropy (MTCC). More importantly, we present the local stability analysis and derive the theoretical weight error power. Simulation results confirm the validity of the theoretical analysis and illustrate the superior performance of the propose algorithm in the EIV cases.
更新日期:2020-02-14

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug